Huijuan Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4066055/publications.pdf Version: 2024-02-01

HUULAN CUL

#	Article	IF	CITATIONS
1	Nickel single-atom catalysts intrinsically promoted by fast pyrolysis for selective electroreduction of CO2 into CO. Applied Catalysis B: Environmental, 2022, 304, 120997.	20.2	73
2	Threeâ€Ðimensional Grapheneâ€Based Macrostructures for Electrocatalysis. Small, 2021, 17, e2005255.	10.0	34
3	Catalyst Design for Electrochemical Reduction of CO ₂ to Multicarbon Products. Small Methods, 2021, 5, e2100736.	8.6	74
4	2 D Materials for Electrochemical Energy Storage: Design, Preparation, and Application. ChemSusChem, 2020, 13, 1155-1171.	6.8	77
5	Boosting bifunctional electrocatalytic activity in S and N co-doped carbon nanosheets for high-efficiency Zn–air batteries. Journal of Materials Chemistry A, 2020, 8, 4386-4395.	10.3	101
6	Bifunctional electrocatalysts for rechargeable Zn-air batteries. Chinese Journal of Catalysis, 2019, 40, 1298-1310.	14.0	111
7	Bi-layer Graphene: Structure, Properties, Preparation and Prospects. Current Graphene Science, 2019, 2, 97-105.	0.5	3
8	Fabricating high-performance sodium ion capacitors with P2-Na0.67Co0.5Mn0.5O2 and MOF-derived carbon. Journal of Energy Chemistry, 2019, 28, 79-84.	12.9	31
9	Bifunctional electrocatalysts of MOF-derived Co–N/C on bamboo-like MnO nanowires for high-performance liquid- and solid-state Zn–air batteries. Journal of Materials Chemistry A, 2018, 6, 9716-9722.	10.3	167
10	Synergistic electrocatalytic oxygen reduction reactions of Pd/B4C for ultra-stable Zn-air batteries. Energy Storage Materials, 2018, 15, 226-233.	18.0	45
11	Heteroatom-doped carbon materials and their composites as electrocatalysts for CO ₂ reduction. Journal of Materials Chemistry A, 2018, 6, 18782-18793.	10.3	136
12	Moltenâ€Saltâ€Assisted Synthesis of 3D Holey Nâ€Doped Graphene as Bifunctional Electrocatalysts for Rechargeable Zn–Air Batteries. Small Methods, 2018, 2, 1800144.	8.6	77
13	Heteroatom-doped graphene as electrocatalysts for air cathodes. Materials Horizons, 2017, 4, 7-19.	12.2	142
14	Graphitization and Pore Structure Adjustment of Graphene for Energy Storage and Conversion. Current Graphene Science, 2017, 1, .	0.5	2
15	3D Graphene Frameworks with Uniformly Dispersed CuS as an Efficient Catalytic Electrode for Quantum Dot-Sensitized Solar Cells. Electrochimica Acta, 2016, 208, 288-295.	5.2	29
16	Chlorine-Induced In Situ Regulation to Synthesize Graphene Frameworks with Large Specific Area for Excellent Supercapacitor Performance. ACS Applied Materials & Interfaces, 2016, 8, 6481-6487.	8.0	29
17	Multifunctional Nitrogenâ€Doped Carbon Nanodots for Photoluminescence, Sensor, and Visibleâ€Lightâ€Induced H ₂ Production. ChemPhysChem, 2015, 16, 3058-3063.	2.1	28
18	Understanding the Formation Mechanism of Graphene Frameworks Synthesized by Solvothermal and Rapid Pyrolytic Processes Based on an Alcohol–Sodium Hydroxide System. ACS Applied Materials & Interfaces, 2015, 7, 11230-11238.	8.0	32

Huijuan Cui

#	Article	IF	CITATIONS
19	Graphene frameworks synthetized with Na2CO3 as a renewable water-soluble substrate and their high rate capability for supercapacitors. Journal of Power Sources, 2015, 293, 143-150.	7.8	32
20	Pure carbon nanodots for excellent photocatalytic hydrogen generation. RSC Advances, 2015, 5, 21332-21335.	3.6	56
21	Dynamics Investigation of Graphene Frameworks-Supported Pt Nanoparticles as Effective Counter Electrodes for Dye-Sensitized Solar Cells. Electrochimica Acta, 2015, 178, 658-664.	5.2	11
22	Self-assembly of CNH nanocages with remarkable catalytic performance. Journal of Materials Chemistry A, 2014, 2, 8179.	10.3	18
23	Graphene Frameworks Promoted Electron Transport in Quantum Dot-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 13833-13840.	8.0	37
24	Synthesis and electrocatalytic performance of nitrogen-doped macroporous carbons. Journal of Materials Chemistry A, 2013, 1, 9469.	10.3	29