Huijuan Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4066055/publications.pdf

Version: 2024-02-01

361413 610901 1,374 24 20 24 h-index citations g-index papers 25 25 25 2168 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Bifunctional electrocatalysts of MOF-derived Co–N/C on bamboo-like MnO nanowires for high-performance liquid- and solid-state Zn–air batteries. Journal of Materials Chemistry A, 2018, 6, 9716-9722.	10.3	167
2	Heteroatom-doped graphene as electrocatalysts for air cathodes. Materials Horizons, 2017, 4, 7-19.	12.2	142
3	Heteroatom-doped carbon materials and their composites as electrocatalysts for CO ₂ reduction. Journal of Materials Chemistry A, 2018, 6, 18782-18793.	10.3	136
4	Bifunctional electrocatalysts for rechargeable Zn-air batteries. Chinese Journal of Catalysis, 2019, 40, 1298-1310.	14.0	111
5	Boosting bifunctional electrocatalytic activity in S and N co-doped carbon nanosheets for high-efficiency Zn–air batteries. Journal of Materials Chemistry A, 2020, 8, 4386-4395.	10.3	101
6	Moltenâ€Saltâ€Assisted Synthesis of 3D Holey Nâ€Doped Graphene as Bifunctional Electrocatalysts for Rechargeable Zn–Air Batteries. Small Methods, 2018, 2, 1800144.	8.6	77
7	2 D Materials for Electrochemical Energy Storage: Design, Preparation, and Application. ChemSusChem, 2020, 13, 1155-1171.	6.8	77
8	Catalyst Design for Electrochemical Reduction of CO ₂ to Multicarbon Products. Small Methods, 2021, 5, e2100736.	8.6	74
9	Nickel single-atom catalysts intrinsically promoted by fast pyrolysis for selective electroreduction of CO2 into CO. Applied Catalysis B: Environmental, 2022, 304, 120997.	20.2	73
10	Pure carbon nanodots for excellent photocatalytic hydrogen generation. RSC Advances, 2015, 5, 21332-21335.	3.6	56
11	Synergistic electrocatalytic oxygen reduction reactions of Pd/B4C for ultra-stable Zn-air batteries. Energy Storage Materials, 2018, 15, 226-233.	18.0	45
12	Graphene Frameworks Promoted Electron Transport in Quantum Dot-Sensitized Solar Cells. ACS Applied Materials & Solar Cells	8.0	37
13	Threeâ€Dimensional Grapheneâ€Based Macrostructures for Electrocatalysis. Small, 2021, 17, e2005255.	10.0	34
14	Understanding the Formation Mechanism of Graphene Frameworks Synthesized by Solvothermal and Rapid Pyrolytic Processes Based on an Alcohol–Sodium Hydroxide System. ACS Applied Materials & Interfaces, 2015, 7, 11230-11238.	8.0	32
15	Graphene frameworks synthetized with Na2CO3 as a renewable water-soluble substrate and their high rate capability for supercapacitors. Journal of Power Sources, 2015, 293, 143-150.	7.8	32
16	Fabricating high-performance sodium ion capacitors with P2-Na0.67Co0.5Mn0.5O2 and MOF-derived carbon. Journal of Energy Chemistry, 2019, 28, 79-84.	12.9	31
17	Synthesis and electrocatalytic performance of nitrogen-doped macroporous carbons. Journal of Materials Chemistry A, $2013, 1, 9469$.	10.3	29
18	3D Graphene Frameworks with Uniformly Dispersed CuS as an Efficient Catalytic Electrode for Quantum Dot-Sensitized Solar Cells. Electrochimica Acta, 2016, 208, 288-295.	5 . 2	29

#	Article	IF	CITATION
19	Chlorine-Induced In Situ Regulation to Synthesize Graphene Frameworks with Large Specific Area for Excellent Supercapacitor Performance. ACS Applied Materials & Samp; Interfaces, 2016, 8, 6481-6487.	8.0	29
20	Multifunctional Nitrogenâ€Doped Carbon Nanodots for Photoluminescence, Sensor, and Visibleâ€Lightâ€Induced H ₂ Production. ChemPhysChem, 2015, 16, 3058-3063.	2.1	28
21	Self-assembly of CNH nanocages with remarkable catalytic performance. Journal of Materials Chemistry A, 2014, 2, 8179.	10.3	18
22	Dynamics Investigation of Graphene Frameworks-Supported Pt Nanoparticles as Effective Counter Electrodes for Dye-Sensitized Solar Cells. Electrochimica Acta, 2015, 178, 658-664.	5.2	11
23	Bi-layer Graphene: Structure, Properties, Preparation and Prospects. Current Graphene Science, 2019, 2, 97-105.	0.5	3
24	Graphitization and Pore Structure Adjustment of Graphene for Energy Storage and Conversion. Current Graphene Science, 2017, 1, .	0.5	2