
Liang Hong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4066029/publications.pdf Version: 2024-02-01

LIANC HONC

#	Article	IF	CITATIONS
1	Organocatalytic enantioselective construction of axially chiral (1 <i>H</i>)-isochromen-1-imines. Organic and Biomolecular Chemistry, 2022, , .	2.8	2
2	Organocatalytic Enantioselective Construction of Spiroketal Lactones Bearing Axial and Central Chirality via an Asymmetric Domino Reaction. Organic Letters, 2022, 24, 2978-2982.	4.6	12
3	1,3â€Dipolar Cycloaddition between Dehydroalanines and C,Nâ€Cyclic Azomethine Imines: Application to Lateâ€Stage Peptide Modification. Angewandte Chemie, 2021, 133, 5391-5398.	2.0	2
4	1,3â€Dipolar Cycloaddition between Dehydroalanines and C,Nâ€Cyclic Azomethine Imines: Application to Lateâ€Stage Peptide Modification. Angewandte Chemie - International Edition, 2021, 60, 5331-5338.	13.8	19
5	Organocatalytic Enantioselective Synthesis of Tetrasubstituted αâ€Amino Allenoates by Dearomative γâ€Addition of 2,3â€Disubstituted Indoles to β,γâ€Alkynylâ€Î±â€imino Esters. Angewandte Chemie - Internation Edition, 2020, 59, 642-647.	1a 1 3.8	71
6	Organocatalytic Enantioselective Synthesis of Tetrasubstituted αâ€Amino Allenoates by Dearomative γâ€Addition of 2,3â€Disubstituted Indoles to β,γâ€Alkynylâ€Î±â€imino Esters. Angewandte Chemie, 2020, 132,	6 3 2-657.	20
7	Asymmetric <i>N</i> -aminoalkylation of 3-substituted indoles by N-protected <i>N</i> , <i>O</i> -acetals: an access to chiral propargyl aminals. Organic and Biomolecular Chemistry, 2020, 18, 4169-4173.	2.8	8
8	Efficient synthesis of cyclic amidine-based fluorophores <i>via</i> 6ï€-electrocyclic ring closure. Chemical Science, 2020, 11, 3586-3591.	7.4	14
9	TMSCI-Catalyzed Tandem Reaction of Dihydroisobenzofuran Acetals with Indoles. Catalysts, 2020, 10, 392.	3.5	3
10	Copper-Catalyzed Regioselective sp ³ C–H Azidation of Alkyl Substituents of Indoles and Tetrahydrocarbazoles. Journal of Organic Chemistry, 2019, 84, 11885-11890.	3.2	14
11	Difunctionalization of Alkenylpyridine <i>N</i> Oxides by the Tandem Addition/Boekelheide Rearrangement. Organic Letters, 2019, 21, 8266-8269.	4.6	10
12	Switchable Skeletal Rearrangement of Dihydroisobenzofuran Acetals with Indoles. Organic Letters, 2019, 21, 4313-4317.	4.6	9
13	Niclosamide Triggers Non-Canonical LC3 Lipidation. Cells, 2019, 8, 248.	4.1	14
14	Discovery of a small molecule targeting autophagy via ATG4B inhibition and cell death of colorectal cancer cells in vitro and in vivo. Autophagy, 2019, 15, 295-311.	9.1	103
15	Phosphoric Acid Catalyzed Asymmetric [2+2] Cyclization/Penicillin–Penillonic Acid Rearrangement. Angewandte Chemie - International Edition, 2018, 57, 4921-4925.	13.8	29
16	ATG4B inhibitor FMK-9a induces autophagy independent on its enzyme inhibition. Archives of Biochemistry and Biophysics, 2018, 644, 29-36.	3.0	36
17	Catalyst-free tandem halogenation/semipinacol rearrangement of allyl alcohols with sodium halide in water. Green Chemistry, 2018, 20, 2477-2480.	9.0	17
18	Regio- and stereospecific Friedel–Crafts alkylation of indoles with spiro-epoxyoxindoles. Organic and Biomolecular Chemistry, 2018, 16, 3655-3661.	2.8	6

LIANG HONG

#	Article	IF	CITATIONS
19	Phosphoric Acid Catalyzed Asymmetric [2+2] Cyclization/Penicillin–Penillonic Acid Rearrangement. Angewandte Chemie, 2018, 130, 5015-5019.	2.0	13
20	Catalytic Kinetic Resolution of Spiro-Epoxyoxindoles with 1-Naphthols: Switchable Asymmetric Tandem Dearomatization/Oxa-Michael Reaction and Friedel–Crafts Alkylation of 1-Naphthols at the C4 Position. ACS Catalysis, 2018, 8, 1810-1816.	11.2	44
21	Access to α,γ-Diamino Diacid Derivatives via Organocatalytic Asymmetric 1,4-Addition of Azlactones and Dehydroalanines. Organic Letters, 2018, 20, 7080-7084.	4.6	26
22	Regio- and stereoselective ring-opening reaction of spiro-epoxyoxindoles with ammonia under catalyst-free conditions. Green Chemistry, 2017, 19, 2107-2110.	9.0	24
23	Efficient Catalytic Kinetic Resolution of Spiroâ€epoxyoxindoles with Concomitant Asymmetric Friedel–Crafts Alkylation of Indoles. Angewandte Chemie - International Edition, 2017, 56, 5332-5335.	13.8	69
24	Efficient Catalytic Kinetic Resolution of Spiroâ€ e poxyoxindoles with Concomitant Asymmetric Friedel–Crafts Alkylation of Indoles. Angewandte Chemie, 2017, 129, 5416-5419.	2.0	20
25	Catalyst-controlled switch of regioselectivity in the asymmetric allylic alkylation of oxazolones with MBHCs. Chemical Communications, 2016, 52, 7882-7885.	4.1	27
26	Chiral Phosphoric Acid Catalyzed Asymmetric Oxidative Dearomatization of Naphthols with Quinones. Organic Letters, 2016, 18, 5288-5291.	4.6	54
27	Sodium Iodide/Hydrogen Peroxideâ€Mediated Oxidation/Lactonization for the Construction of Spirocyclic Oxindoleâ€Lactones. Advanced Synthesis and Catalysis, 2016, 358, 2873-2877.	4.3	37
28	Golgi-associated LC3 lipidation requires V-ATPase in noncanonical autophagy. Cell Death and Disease, 2016, 7, e2330-e2330.	6.3	38
29	Enantioselective Dearomative Arylation of Isoquinolines. ACS Catalysis, 2016, 6, 5290-5294.	11.2	63
30	Additive Effects on Asymmetric Catalysis. Chemical Reviews, 2016, 116, 4006-4123.	47.7	299
31	Asymmetric dearomatization of phenols. Organic and Biomolecular Chemistry, 2016, 14, 2164-2176.	2.8	274
32	Chiral phosphoric acid catalyzed enantioselective 1,3-dipolar cycloaddition reaction of azlactones. Chemical Communications, 2016, 52, 1377-1380.	4.1	55
33	Organocatalytic enantioselective formal arylation of azlactones using quinones as the aromatic partner. Chemical Communications, 2015, 51, 11280-11282.	4.1	48
34	Copper-catalyzed cascade azidation–cyclization of tryptophols and tryptamines. Chemical Communications, 2015, 51, 12293-12296.	4.1	47
35	Sodium Halides as Halogenating Reagents: Rhodium(III)â€Catalyzed Versatile and Practical Halogenation of Aryl Compounds. Advanced Synthesis and Catalysis, 2015, 357, 345-349.	4.3	56
36	An Organocatalytic Michael–Michael Cascade for the Enantioselective Construction of Spirocyclopentane Bioxindoles: Control of Four Contiguous Stereocenters. Organic Letters, 2014, 16, 544-547.	4.6	100

LIANG HONG

#	Article	IF	CITATIONS
37	Construction of the N1–C3 Linkage Stereogenic Centers by Catalytic Asymmetric Amination Reaction of 3-Bromooxindoles with Indolines. Organic Letters, 2014, 16, 2394-2397.	4.6	43
38	Organocatalytic Highly Enantioselective Monofluoroalkylation of 3-Bromooxindoles: Construction of Fluorinated 3,3′-Disubstituted Oxindoles and Their Derivatives. Organic Letters, 2014, 16, 1960-1963.	4.6	43
39	Enantioselective 1,3-dipolar cycloaddition of methyleneindolinones and N,N′-cyclic azomethine imines. Chemical Communications, 2013, 49, 6713.	4.1	90
40	Organocatalytic Diastereo―and Enantioselective 1,3â€Dipolar Cycloaddition of Azlactones and Methyleneindolinones. Angewandte Chemie - International Edition, 2013, 52, 8633-8637.	13.8	131
41	Construction of Vicinal All-Carbon Quaternary Stereocenters by Catalytic Asymmetric Alkylation Reaction of 3-Bromooxindoles with 3-Substituted Indoles: Total Synthesis of (+)-Perophoramidine. Journal of the American Chemical Society, 2013, 135, 14098-14101.	13.7	160
42	Base-Catalyzed Diastereoselective [3 + 3] Annulation of 3-Isothiocyanatooxindoles and Azomethine Imines. Organic Letters, 2013, 15, 4988-4991.	4.6	57
43	The Enantioselective Formal Synthesis of Rhynchophylline and Isorhynchophylline. Chemistry - an Asian Journal, 2013, 8, 542-545.	3.3	30
44	Recent Advances in Asymmetric Organocatalytic Construction of 3,3′‣pirocyclic Oxindoles. Advanced Synthesis and Catalysis, 2013, 355, 1023-1052.	4.3	655
45	"Organo–Metal―Synergistic Catalysis: The 1+1>2 Effect for the Construction of Spirocyclopentene Oxindoles. Chemistry - A European Journal, 2012, 18, 13959-13963.	3.3	80
46	An Organocatalytic Cascade Strategy for the Enantioselective Construction of Spirocyclopentane Bioxindoles Containing Three Contiguous Stereocenters and Two Spiro Quaternary Centers. Chemistry - A European Journal, 2012, 18, 6737-6741.	3.3	150
47	Asymmetric Organocatalytic Allylic Substitution of Morita–Baylis–Hillman Carbonates with Allylamines for the Synthesis of 2,5-Dihydropyrroles. Journal of Organic Chemistry, 2011, 76, 7826-7833.	3.2	47
48	Facile Creation of 2â€5ubstituted Indolinâ€3â€ones by Using Primary–Secondary Diamine Catalysts. Chemistry - A European Journal, 2011, 17, 6030-6033.	3.3	41
49	The Marriage of Organocatalysis with Metal Catalysis: Access to Multisubstituted Chiral 2,5â€Dihydropyrroles by Cascade Iminium/Enamine–Metal Cooperative Catalysis. Chemistry - A European Journal, 2011, 17, 13958-13962.	3.3	62
50	Asymmetric Organocatalytic Nâ€Alkylation of Indoleâ€2â€carbaldehydes with α,βâ€Unsaturated Aldehydes: Oneâ€Pot Synthesis of Chiral Pyrrolo[1,2â€ <i>a</i>]indoleâ€2â€carbaldehydes. Chemistry - A European Journal, 2010, 16, 440-444.	3.3	121
51	Asymmetric Organocatalytic N-Alkylation of Indole-2-carbaldehydes with α,β-Unsaturated Aldehydes: One-Pot Synthesis of Chiral Pyrrolo[1,2-a]indole-2-carbaldehydes. Chemistry - A European Journal, 2010, 16, 746-746.	3.3	2
52	Asymmetric construction of quaternary stereocenters by direct conjugate addition of oxindoles to enone. Tetrahedron: Asymmetry, 2010, 21, 2493-2497.	1.8	30
53	Base-Accelerated Enantioselective Substitution of Moritaâ^'Baylisâ^'Hillman Carbonates with Dialkyl Phosphine Oxides. Organic Letters, 2010, 12, 3914-3917.	4.6	82
54	Enantioselective construction of allylic phosphine oxides through substitution of Morita–Baylis–Hillman carbonates with phosphine oxides. Chemical Communications, 2010, 46, 2856.	4.1	87

LIANG HONG

#	Article	IF	CITATIONS
55	An Efficient Enantioselective Method for Asymmetric Friedel–Crafts Alkylation of Indoles with α,βâ€Unsaturated Aldehydes. Advanced Synthesis and Catalysis, 2009, 351, 772-778.	4.3	66
56	Enantioselective Friedel–Crafts Alkylation of 4,7â€Dihydroindoles with Enones Catalyzed by Primary–Secondary Diamines. Chemistry - A European Journal, 2009, 15, 11105-11108.	3.3	75
57	Enantioselective addition of thiophenylboronic acids to aldehydes using ZnEt2/Schiff-base catalytic system. Tetrahedron: Asymmetry, 2009, 20, 616-620.	1.8	13
58	Organocatalytic Enantioselective Friedelâ^'Crafts Alkylation of 4,7-Dihydroindoles with α,β-Unsaturated Aldehydes: An Easy Access to 2-Substituted Indoles. Organic Letters, 2009, 11, 2177-2180.	4.6	85
59	Organocatalytic Asymmetric Friedelâ~Crafts Alkylation/Cyclization Cascade Reaction of 1-Naphthols and α,β-Unsaturated Aldehydes: An Enantioselective Synthesis of Chromanes and Dihydrobenzopyranes. Journal of Organic Chemistry, 2009, 74, 6881-6884.	3.2	101
60	Catalytic asymmetric addition of alkynylzinc reagents to ketones using polymer-supported chiral Schiff-base amino alcohols. Tetrahedron: Asymmetry, 2008, 19, 191-196.	1.8	26
61	Schiff-base Amino Alcohol-zinc Complex for Enantioselective Addition of Phenylacetylene to Aromatic Ketones. Chemical Research in Chinese Universities, 2008, 24, 306-311.	2.6	Ο
62	Low Ligand Loading, Highly Enantioselective Addition of Phenylacetylene to Aromatic Ketones Catalyzed by Schiff-Base Amino Alcohols. Organic Letters, 2006, 8, 2277-2280.	4.6	78

5