Kwok-Wai Lo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4065822/publications.pdf Version: 2024-02-01

KWOK-WALLO

#	Article	IF	CITATIONS
1	Isolation of exosome from the culture medium of Nasopharyngeal cancer (NPC) C666-1 cells using inertial based Microfluidic channel. Biomedical Microdevices, 2022, 24, 12.	1.4	6
2	Dual inhibition of anti-apoptotic proteins BCL-XL and MCL-1 enhances cytotoxicity of Nasopharyngeal carcinoma cells. Discover Oncology, 2022, 13, 9.	0.8	3
3	Cancerâ€associated fibroblasts in nonsmall cell lung cancer: From molecular mechanisms to clinical implications. International Journal of Cancer, 2022, 151, 1195-1215.	2.3	15
4	The CBP/β-Catenin Antagonist, ICG-001, Inhibits Tumor Metastasis via Blocking of the miR-134/ITGB1 Axis-Mediated Cell Adhesion in Nasopharyngeal Carcinoma. Cancers, 2022, 14, 3125.	1.7	4
5	Accurate reconstruction of viral genomes in human cells from short reads using iterative refinement. BMC Genomics, 2022, 23, .	1.2	1
6	Dualâ€Targeting Peptideâ€Guided Approach for Precision Delivery and Cancer Monitoring by Using a Safe Upconversion Nanoplatform. Advanced Science, 2021, 8, e2002919.	5.6	51
7	Somatostatin receptor 2 expression in nasopharyngeal cancer is induced by Epstein Barr virus infection: impact on prognosis, imaging and therapy. Nature Communications, 2021, 12, 117.	5.8	34
8	Short-Form Thymic Stromal Lymphopoietin (sfTSLP) Is the Predominant Isoform Expressed by Gynaecologic Cancers and Promotes Tumour Growth. Cancers, 2021, 13, 980.	1.7	8
9	Nasopharyngeal carcinoma: an evolving paradigm. Nature Reviews Clinical Oncology, 2021, 18, 679-695.	12.5	207
10	Whole-genome profiling of nasopharyngeal carcinoma reveals viral-host co-operation in in in in in in in inflammatory NF-κB activation and immune escape. Nature Communications, 2021, 12, 4193.	5.8	56
11	Identification and characterization of a novel Epstein-Barr Virus-encoded circular RNA from LMP-2 Gene. Scientific Reports, 2021, 11, 14392.	1.6	10
12	A three-dimensional spheroid-specific role for Wnt–β-catenin and Eph–ephrin signaling in nasopharyngeal carcinoma cells. Journal of Cell Science, 2021, 134, .	1.2	3
13	SSTR2 in Nasopharyngeal Carcinoma: Relationship with Latent EBV Infection and Potential as a Therapeutic Target. Cancers, 2021, 13, 4944.	1.7	9
14	Combinations of indole based alkaloids from Mitragyna speciosa (Kratom) and cisplatin inhibit cell proliferation and migration of nasopharyngeal carcinoma cell lines. Journal of Ethnopharmacology, 2021, 279, 114391.	2.0	15
15	NOTCH3, a crucial target of miR-491-5p/miR-875-5p, promotes gastric carcinogenesis by upregulating PHLDB2 expression and activating Akt pathway. Oncogene, 2021, 40, 1578-1594.	2.6	17
16	Quantifying full-length circular RNAs in cancer. Genome Research, 2021, 31, 2340-2353.	2.4	8
17	STK3 promotes gastric carcinogenesis by activating Ras-MAPK mediated cell cycle progression and serves as an independent prognostic biomarker. Molecular Cancer, 2021, 20, 147.	7.9	13
18	Translational genomics of nasopharyngeal cancer. Seminars in Cancer Biology, 2020, 61, 84-100.	4.3	90

#	Article	IF	CITATIONS
19	EBV–encoded miRNAs can sensitize nasopharyngeal carcinoma to chemotherapeutic drugs by targeting BRCA1. Journal of Cellular and Molecular Medicine, 2020, 24, 13523-13535.	1.6	11
20	Therapeutic evaluation of palbociclib and its compatibility with other chemotherapies for primary and recurrent nasopharyngeal carcinoma. Journal of Experimental and Clinical Cancer Research, 2020, 39, 262.	3.5	13
21	Distinct Molecular Landscape of Epstein–Barr Virus Associated Pulmonary Lymphoepithelioma-Like Carcinoma Revealed by Genomic Sequencing. Cancers, 2020, 12, 2065.	1.7	25
22	Role of miR-96/EVI1/miR-449a Axis in the Nasopharyngeal Carcinoma Cell Migration and Tumor Sphere Formation. International Journal of Molecular Sciences, 2020, 21, 5495.	1.8	8
23	FGF18–FGFR2 signaling triggers the activation of c-Jun–YAP1 axis to promote carcinogenesis in a subgroup of gastric cancer patients and indicates translational potential. Oncogene, 2020, 39, 6647-6663.	2.6	28
24	Omics-wide quantitative B-cell infiltration analyses identify GPR18 for human cancer prognosis with superiority over CD20. Communications Biology, 2020, 3, 234.	2.0	13
25	Targeting Epstein-Barr Virus in Nasopharyngeal Carcinoma. Frontiers in Oncology, 2020, 10, 600.	1.3	62
26	Contaminated and misidentified cell lines commonly use in cancer research. Molecular Carcinogenesis, 2020, 59, 573-574.	1.3	6
27	Erlotinib sensitivity of MAPK1p.D321N mutation in head and neck squamous cell carcinoma. Npj Genomic Medicine, 2020, 5, 17.	1.7	8
28	AMOTL1 enhances YAP1 stability and promotes YAP1-driven gastric oncogenesis. Oncogene, 2020, 39, 4375-4389.	2.6	37
29	Single Agent and Synergistic Activity of Maritoclax with ABT-263 in Nasopharyngeal Carcinoma (NPC) Cell Lines. Tropical Life Sciences Research, 2020, 31, 1-13.	0.5	8
30	MAPK pathway mutations in head and neck cancer affect immune microenvironments and ErbB3 signaling. Life Science Alliance, 2020, 3, e201900545.	1.3	27
31	Targeting the polycomb repressive complex-2 related proteins with novel combinational strategies for nasopharyngeal carcinoma. American Journal of Cancer Research, 2020, 10, 3267-3284.	1.4	4
32	FGF18, a prominent player in FGF signaling, promotes gastric tumorigenesis through autocrine manner and is negatively regulated by miR-590-5p. Oncogene, 2019, 38, 33-46.	2.6	41
33	Crucifera sulforaphane (SFN) inhibits the growth of nasopharyngeal carcinoma through DNA methyltransferase 1 (DNMT1)/Wnt inhibitory factor 1 (WIF1) axis. Phytomedicine, 2019, 63, 153058.	2.3	19
34	NARD: whole-genome reference panel of 1779 Northeast Asians improves imputation accuracy of rare and low-frequency variants. Genome Medicine, 2019, 11, 64.	3.6	28
35	The ATP-binding cassette transporter ABCF1 is a hepatic oncofetal protein that promotes chemoresistance, EMT and cancer stemness in hepatocellular carcinoma. Cancer Letters, 2019, 457, 98-109.	3.2	40
36	mTORC2-mediated PDHE1 $\hat{l}\pm$ nuclear translocation links EBV-LMP1 reprogrammed glucose metabolism to cancer metastasis in nasopharyngeal carcinoma. Oncogene, 2019, 38, 4669-4684.	2.6	40

#	Article	IF	CITATIONS
37	Reactivation of Epstein–Barr virus by a dual-responsive fluorescent EBNA1-targeting agent with Zn ²⁺ -chelating function. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26614-26624.	3.3	22
38	Autophagy-Dependent Reactivation of Epstein-Barr Virus Lytic Cycle and Combinatorial Effects of Autophagy-Dependent and Independent Lytic Inducers in Nasopharyngeal Carcinoma. Cancers, 2019, 11, 1871.	1.7	9
39	Genomic profiles of nasopharyngeal carcinoma: The importance of histological subtyping and Epsteinâ€Barr virus in situ assays. Cancer, 2018, 124, 434-435.	2.0	2
40	EBVâ€encoded miRNAs target ATMâ€mediated response in nasopharyngeal carcinoma. Journal of Pathology, 2018, 244, 394-407.	2.1	44
41	Antitumor Activity of Nivolumab in Recurrent and Metastatic Nasopharyngeal Carcinoma: An International, Multicenter Study of the Mayo Clinic Phase 2 Consortium (NCI-9742). Journal of Clinical Oncology, 2018, 36, 1412-1418.	0.8	324
42	Treatment of advanced hepatocellular carcinoma: immunotherapy from checkpoint blockade to potential of cellular treatment. Translational Gastroenterology and Hepatology, 2018, 3, 89-89.	1.5	30
43	The Wnt modulator ICC‑001 mediates the inhibition of nasopharyngeal carcinoma cell migration in vitro via the miR‑150/CD44 axis. International Journal of Oncology, 2018, 54, 1010-1020.	1.4	12
44	Establishment and characterization of new tumor xenografts and cancer cell lines from EBV-positive nasopharyngeal carcinoma. Nature Communications, 2018, 9, 4663.	5.8	106
45	EBNA1-targeted inhibitors: Novel approaches for the treatment of Epstein-Barr virus-associated cancers. Theranostics, 2018, 8, 5307-5319.	4.6	39
46	Preclinical evaluation of ribociclib and its synergistic effect in combination with alpelisib in non-keratinizing nasopharyngeal carcinoma. Scientific Reports, 2018, 8, 8010.	1.6	25
47	Establishment of a nasopharyngeal carcinoma cell line capable of undergoing lytic Epstein–Barr virus reactivation. Laboratory Investigation, 2018, 98, 1093-1104.	1.7	45
48	Activation of sterol regulatory elementâ€binding protein 1 (SREBP1)â€mediated lipogenesis by the Epstein–Barr virusâ€encoded latent membrane protein 1 (LMP1) promotes cell proliferation and progression of nasopharyngeal carcinoma. Journal of Pathology, 2018, 246, 180-190.	2.1	51
49	RASAL2 promotes tumor progression through LATS2/YAP1 axis of hippo signaling pathway in colorectal cancer. Molecular Cancer, 2018, 17, 102.	7.9	58
50	Genomic Landscapes of EBV-Associated Nasopharyngeal Carcinoma vs. HPV-Associated Head and Neck Cancer. Cancers, 2018, 10, 210.	1.7	43
51	Ternary copper(II) complex: NCI60 screening, toxicity studies, and evaluation of efficacy in xenograft models of nasopharyngeal carcinoma. PLoS ONE, 2018, 13, e0191295.	1.1	15
52	Exome and genome sequencing of nasopharynx cancer identifies NF-κB pathway activating mutations. Nature Communications, 2017, 8, 14121.	5.8	227
53	Oncogenic <scp>S1P</scp> signalling in <scp>EBV</scp> â€associated nasopharyngeal carcinoma activates <scp>AKT</scp> and promotes cell migration through <scp>S1P</scp> receptor 3. Journal of Pathology, 2017, 242, 62-72.	2.1	33
54	The role of metabolic reprogramming in γâ€herpesvirusâ€associated oncogenesis. International Journal of Cancer, 2017, 141, 1512-1521.	2.3	14

#	Article	IF	CITATIONS
55	Epstein-Barr Virus-Encoded Latent Membrane Protein 1 Upregulates Glucose Transporter 1 Transcription via the mTORC1/NF-κB Signaling Pathways. Journal of Virology, 2017, 91, .	1.5	71
56	CD24, CD44 and EpCAM enrich for tumour-initiating cells in a newly established patient-derived xenograft of nasopharyngeal carcinoma. Scientific Reports, 2017, 7, 12372.	1.6	15
57	Epstein–Barr virus infection and nasopharyngeal carcinoma. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160270.	1.8	380
58	Downregulation of long non oding RNA MEG3 in nasopharyngeal carcinoma. Molecular Carcinogenesis, 2017, 56, 1041-1054.	1.3	59
59	OMSV enables accurate and comprehensive identification of large structural variations from nanochannel-based single-molecule optical maps. Genome Biology, 2017, 18, 230.	3.8	28
60	Overexpression of PIN1 Enhances Cancer Growth and Aggressiveness with Cyclin D1 Induction in EBV-Associated Nasopharyngeal Carcinoma. PLoS ONE, 2016, 11, e0156833.	1.1	30
61	Yin Yang 1â€mediated epigenetic silencing of tumourâ€suppressive microRNAs activates nuclear factorâ€₽̂B in hepatocellular carcinoma. Journal of Pathology, 2016, 238, 651-664.	2.1	46
62	MicroRNA-183 suppresses cancer stem-like cell properties in EBV-associated nasopharyngeal carcinoma. BMC Cancer, 2016, 16, 495.	1.1	25
63	Comprehensive characterization of the patient-derived xenograft and the paralleled primary hepatocellular carcinoma cell line. Cancer Cell International, 2016, 16, 41.	1.8	12
64	The role of Epstein–Barr virus in epithelial malignancies. Journal of Pathology, 2015, 235, 323-333.	2.1	268
65	Activation of the <scp>FGFR1</scp> signalling pathway by the Epstein–Barr virusâ€encoded <scp>LMP1</scp> promotes aerobic glycolysis and transformation of human nasopharyngeal epithelial cells. Journal of Pathology, 2015, 237, 238-248.	2.1	94
66	Therapeutic targeting of CBP/l²-catenin signaling reduces cancer stem-like population and synergistically suppresses growth of EBV-positive nasopharyngeal carcinoma cells with cisplatin. Scientific Reports, 2015, 5, 9979.	1.6	59
67	Copy number gain of granulin-epithelin precursor (GEP) at chromosome 17q21 associates with overexpression in human liver cancer. BMC Cancer, 2015, 15, 264.	1.1	5
68	Establishment and characterization of a novel primary hepatocellular carcinoma cell line with metastatic ability in vivo. Cancer Cell International, 2014, 14, 103.	1.8	25
69	Are special read alignment strategies necessary and cost-effective when handling sequencing reads from patient-derived tumor xenografts?. BMC Genomics, 2014, 15, 1172.	1.2	28
70	Etiological factors of nasopharyngeal carcinoma. Oral Oncology, 2014, 50, 330-338.	0.8	206
71	Integrative Identification of Epstein–Barr Virus–Associated Mutations and Epigenetic Alterations in Gastric Cancer. Gastroenterology, 2014, 147, 1350-1362.e4.	0.6	90
72	miR-31 is consistently inactivated in EBV-associated nasopharyngeal carcinoma and contributes to its tumorigenesis. Molecular Cancer, 2014, 13, 184.	7.9	39

#	Article	IF	CITATIONS
73	Treatment of Nasopharyngeal Carcinoma Cells with the Histone-Deacetylase Inhibitor Abexinostat: Cooperative Effects with Cis-platin and Radiotherapy on Patient-Derived Xenografts. PLoS ONE, 2014, 9, e91325.	1.1	34
74	Epigenetic Inactivation of Inositol polyphosphate 4-phosphatase B (INPP4B), a Regulator of PI3K/AKT Signaling Pathway in EBV-Associated Nasopharyngeal Carcinoma. PLoS ONE, 2014, 9, e105163.	1.1	28
75	Cancer stem-like cells in Epstein-Barr virus-associated nasopharyngeal carcinoma. Chinese Journal of Cancer, 2014, 33, 529-38.	4.9	25
76	EBV infection and persistence in nasopharyngeal epithelial cells. Chinese Journal of Cancer, 2014, 33, 549-55.	4.9	43
77	Complete genomic sequence of Epstein-Barr virus in nasopharyngeal carcinoma cell line C666-1. Infectious Agents and Cancer, 2013, 8, 29.	1.2	37
78	Role of MIF/CXCL8/CXCR2 signaling in the growth of nasopharyngeal carcinoma tumor spheres. Cancer Letters, 2013, 335, 81-92.	3.2	47
79	Acquired Genetic and Epigenetic Alterations in Nasopharyngeal Carcinoma. Advances in Experimental Medicine and Biology, 2013, , 61-81.	0.8	7
80	Identification of a recurrent transforming UBR5–ZNF423 fusion gene in EBV â€associated nasopharyngeal carcinoma. Journal of Pathology, 2013, 231, 158-167.	2.1	43
81	Inhibition of the <scp>LKB1–AMPK</scp> pathway by the Epstein–Barr virusâ€encoded <scp>LMP1</scp> promotes proliferation and transformation of human nasopharyngeal epithelial cells. Journal of Pathology, 2013, 230, 336-346.	2.1	59
82	Constitutive activation of distinct NF-κB signals in EBV-associated nasopharyngeal carcinoma. Journal of Pathology, 2013, 231, 311-322.	2.1	119
83	A novel Hsp90 inhibitor AT13387 induces senescence in EBV-positive nasopharyngeal carcinoma cells and suppresses tumor formation. Molecular Cancer, 2013, 12, 128.	7.9	54
84	Enhanced IL-6/IL-6R Signaling Promotes Growth and Malignant Properties in EBV-Infected Premalignant and Cancerous Nasopharyngeal Epithelial Cells. PLoS ONE, 2013, 8, e62284.	1.1	69
85	Cyclin D1 overexpression supports stable EBV infection in nasopharyngeal epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3473-82.	3.3	127
86	CXCR6 and CCR5 Localize T Lymphocyte Subsets in Nasopharyngeal Carcinoma. American Journal of Pathology, 2012, 180, 1215-1222.	1.9	41
87	Toll-like receptor 3 in Epstein-Barr virus-associated nasopharyngeal carcinomas: consistent expression and cytotoxic effects of its synthetic ligand poly(A:U) combined to a Smac-mimetic. Infectious Agents and Cancer, 2012, 7, 36.	1.2	18
88	CD44+ Cancer Stem-Like Cells in EBV-Associated Nasopharyngeal Carcinoma. PLoS ONE, 2012, 7, e52426.	1.1	69
89	Inhibition of NOTCH3 signalling significantly enhances sensitivity to cisplatin in EBVâ€associated nasopharyngeal carcinoma. Journal of Pathology, 2012, 226, 471-481.	2.1	62
90	The pathological roles of <i>BART</i> miRNAs in nasopharyngeal carcinoma. Journal of Pathology, 2012, 227, 392-403.	2.1	83

#	Article	IF	CITATIONS
91	Deciphering the molecular genetic basis of NPC through molecular, cytogenetic, and epigenetic approaches. Seminars in Cancer Biology, 2012, 22, 79-86.	4.3	194
92	The biology of EBV infection in human epithelial cells. Seminars in Cancer Biology, 2012, 22, 137-143.	4.3	99
93	Preclinical activity of gefitinib in non-keratinizing nasopharyngeal carcinoma cell lines and biomarkers of response. Investigational New Drugs, 2010, 28, 326-333.	1.2	40
94	Epsteinâ€Barr virus infection in immortalized nasopharyngeal epithelial cells: Regulation of infection and phenotypic characterization. International Journal of Cancer, 2010, 127, 1570-1583.	2.3	80
95	Identification of a novel 12p13.3 amplicon in nasopharyngeal carcinoma. Journal of Pathology, 2010, 220, 97-107.	2.1	44
96	Photodynamic therapy-mediated modulation of inflammatory cytokine production by Epstein–Barr virus-infected nasopharyngeal carcinoma cells. Cellular and Molecular Immunology, 2010, 7, 323-326.	4.8	16
97	Glucocorticoids activate Epstein Barr virus lytic replication through the upregulation of immediate early BZLF1 gene expression. Brain, Behavior, and Immunity, 2010, 24, 1089-1096.	2.0	45
98	Role of the RARRES1 gene in nasopharyngeal carcinoma. Cancer Genetics and Cytogenetics, 2009, 194, 58-64.	1.0	26
99	Modulation of LMP2A Expression by a Newly Identified Epstein-Barr Virus-Encoded MicroRNA miR-BART22. Neoplasia, 2009, 11, 1174-IN17.	2.3	176
100	Progressive increase of genetic alteration in urinary bladder cancer by combined allelotyping analysis and comparative genomic hybridization. International Journal of Oncology, 2009, 34, 963-70.	1.4	14
101	Inhibition of nasopharyngeal carcinoma growth by RTAâ€expressing baculovirus vectors containing <i>oriP</i> . Journal of Gene Medicine, 2008, 10, 1124-1133.	1.4	10
102	Authentication of nasopharyngeal carcinoma tumor lines. International Journal of Cancer, 2008, 122, 2169-2171.	2.3	88
103	Hepatocyte growth factor enhances proteolysis and invasiveness of human nasopharyngeal cancer cells through activation of PI3K and JNK. FEBS Letters, 2008, 582, 3415-3422.	1.3	28
104	Recurrent Overexpression of c-IAP2 in EBV-Associated Nasopharyngeal Carcinomas: Critical Role in Resistance to Toll-like Receptor 3-Mediated Apoptosis. Neoplasia, 2008, 10, 1183-IN7.	2.3	45
105	Efficacy of Systemically Administered Mutant Vesicular Stomatitis Virus (VSVΔ51) Combined with Radiation for Nasopharyngeal Carcinoma. Clinical Cancer Research, 2008, 14, 4891-4897.	3.2	16
106	Modulation of LMP1 protein expression by EBV-encoded microRNAs. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16164-16169.	3.3	322
107	Imaging the Modulation of Adenoviral Kinetics and Biodistribution for Cancer Gene Therapy. Molecular Therapy, 2007, 15, 921-929.	3.7	19
108	Hypermethylation of RASSF1A in Human and Rhesus Placentas. American Journal of Pathology, 2007, 170, 941-950.	1.9	128

#	Article	IF	CITATIONS
109	Epigenetic inactivation of the deleted in lung and esophageal cancer 1 gene in nasopharyngeal carcinoma. Genes Chromosomes and Cancer, 2007, 46, 171-180.	1.5	54
110	Epstein-Barr Virus Infection Alters Cellular Signal Cascades in Human Nasopharyngeal Epithelial Cells. Neoplasia, 2006, 8, 173-180.	2.3	169
111	Candidate Tumor-Suppressor Gene DLEC1 Is Frequently Downregulated by Promoter Hypermethylation and Histone Hypoacetylation in Human Epithelial Ovarian Cancer. Neoplasia, 2006, 8, 268-278.	2.3	75
112	PIK3CAmutations in nasopharyngeal carcinoma. International Journal of Cancer, 2006, 118, 1065-1067.	2.3	51
113	Multiple dysregulated pathways in nasopharyngeal carcinoma revealed by gene expression profiling. International Journal of Cancer, 2006, 119, 2467-2475.	2.3	87
114	BS69, a Specific Adaptor in the Latent Membrane Protein 1-Mediated c-Jun N-Terminal Kinase Pathway. Molecular and Cellular Biology, 2006, 26, 448-456.	1.1	46
115	Silencing of the retinoid response geneTIG1 by promoter hypermethylation in nasopharyngeal carcinoma. International Journal of Cancer, 2005, 113, 386-392.	2.3	50
116	Stable expression of EBERs in immortalized nasopharyngeal epithelial cells confers resistance to apoptotic stress. Molecular Carcinogenesis, 2005, 44, 92-101.	1.3	43
117	Array-Based Comparative Genomic Hybridization Analysis Identified Cyclin D1 as a Target Oncogene at 11q13.3 in Nasopharyngeal Carcinoma. Cancer Research, 2005, 65, 8125-8133.	0.4	109
118	Identification of a Novel Homozygous Deletion Region at 6q23.1 in Medulloblastomas Using High-Resolution Array Comparative Genomic Hybridization Analysis. Clinical Cancer Research, 2005, 11, 4707-4716.	3.2	30
119	Investigation of the Genomic Representation of Plasma DNA in Pregnant Women by Comparative Genomic Hybridization Analysis: A Feasibility Study. Clinical Chemistry, 2005, 51, 2398-2401.	1.5	4
120	Characterization of chromosome 3q and 12q amplicons in nasopharyngeal carcinoma cell lines. International Journal of Oncology, 2005, 26, 49.	1.4	17
121	Epigenetic Silencing of Cellular Retinol-Binding Proteins in Nasopharyngeal Carcinoma. Neoplasia, 2005, 7, 67-74.	2.3	39
122	Clinical Implications of Promoter Hypermethylation in RASSF1A and MGMT in Retinoblastoma. Neoplasia, 2005, 7, 200-206.	2.3	49
123	Microsatellite Instability and MLH1Promoter Methylation in Human Retinoblastoma. , 2004, 45, 3404.		30
124	Aberrant methylation of RASSF4/AD037 in nasopharyngeal carcinoma. Oncology Reports, 2004, 12, 781.	1.2	16
125	Constitutional activation of IL-6-mediated JAK/STAT pathway through hypermethylation of SOCS-1 in human gastric cancer cell line. British Journal of Cancer, 2004, 91, 1335-1341.	2.9	85
126	Focus on nasopharyngeal carcinoma. Cancer Cell, 2004, 5, 423-428.	7.7	502

8

#	Article	IF	CITATIONS
127	Phenotypic alterations induced by the Hong Kong-prevalent Epstein-Barr virus-encoded LMP1 variant (2117-LMP1) in nasopharyngeal epithelial cells. International Journal of Cancer, 2004, 109, 919-925.	2.3	48
128	RASSF1A is a target tumor suppressor from 3p21.3 in nasopharyngeal carcinoma. International Journal of Cancer, 2004, 109, 839-847.	2.3	100
129	Size Distributions of Maternal and Fetal DNA in Maternal Plasma. Clinical Chemistry, 2004, 50, 88-92.	1.5	512
130	Aberrant methylation of RASSF4/AD037 in nasopharyngeal carcinoma. Oncology Reports, 2004, 12, 781-7.	1.2	34
131	Molecular cytogenetic characterization of nasopharyngeal carcinoma cell lines and xenografts by comparative genomic hybridization and spectral karyotyping. Cancer Genetics and Cytogenetics, 2003, 140, 124-132.	1.0	36
132	Hypermethylation of the tumor suppressor gene RASSFIA and frequent concomitant loss of heterozygosity at 3p21 in cervical cancers. International Journal of Cancer, 2003, 105, 204-209.	2.3	65
133	Epigenetic inactivation ofTSLC1 gene in nasopharyngeal carcinoma. Molecular Carcinogenesis, 2003, 38, 170-178.	1.3	65
134	Re: Discrete Alterations in the BZLF1 Promoter in Tumor and Non-Tumor-Associated Epstein-Barr Virus. Journal of the National Cancer Institute, 2003, 95, 1008-1009.	3.0	26
135	Genome wide detection of oncogene amplifications in nasopharyngeal carcinoma by array based comparative genomic hybridization. International Journal of Oncology, 2002, 20, 467.	1.4	38
136	Metachronous bilateral mammary metaplastic and infiltrating duct carcinomas: A molecular study for clonality. Human Pathology, 2002, 33, 677-679.	1.1	23
137	Genetic and epigenetic changes in nasopharyngeal carcinoma. Seminars in Cancer Biology, 2002, 12, 451-462.	4.3	245
138	Nasopharyngeal carcinoma in situ (NPCIS)?pathologic and clinical perspectives. Head and Neck, 2002, 24, 989-995.	0.9	29
139	Loss of heterozygosity and mutations are the major mechanisms of RB1 gene inactivation in Chinese with sporadic retinoblastoma. Human Mutation, 2002, 20, 408-408.	1.1	79
140	Absence of SDHD mutations in primary nasopharyngeal carcinomas. International Journal of Cancer, 2002, 97, 875-877.	2.3	11
141	Promoter hypermethylation of theEDNRB gene in nasopharyngeal carcinoma. International Journal of Cancer, 2002, 98, 651-655.	2.3	65
142	Frequent chromosome 9p losses in histologically normal nasopharyngeal epithelia from southern Chinese. International Journal of Cancer, 2002, 102, 300-303.	2.3	72
143	Generation of monoclonal antibodies against Hong Kong nasopharyngeal carcinoma-associated Epstein-Barr virus latent membrane protein 1 (LMP1). International Journal of Cancer, 2002, 102, 492-498.	2.3	6
144	Promoter hypermethylation of multiple genes in nasopharyngeal carcinoma. Clinical Cancer Research, 2002, 8, 131-7.	3.2	180

#	Article	IF	CITATIONS
145	Genome wide detection of oncogene amplifications in nasopharyngeal carcinoma by array based comparative genomic hybridization. International Journal of Oncology, 2002, 20, 467-73.	1.4	33
146	Quantitative Epstein-Barr virus DNA analysis and detection of gene promoter hypermethylation in nasopharyngeal (NP) brushing samples from patients with NP carcinoma. Clinical Cancer Research, 2002, 8, 2612-9.	3.2	63
147	Detection of Multiple Gene Amplifications in Glioblastoma Multiforme Using Array-Based Comparative Genomic Hybridization. Laboratory Investigation, 2001, 81, 717-723.	1.7	184
148	Frequent c-myc and Int-2 overrepresentations in nasopharyngeal carcinoma. Human Pathology, 2000, 31, 169-178.	1.1	63
149	High resolution allelotype of microdissected primary nasopharyngeal carcinoma. Cancer Research, 2000, 60, 3348-53.	0.4	125
150	High frequency of p16INK4A gene alterations in hepatocellular carcinoma. Oncogene, 1999, 18, 789-795.	2.6	172
151	Frequent allelic loss on chromosome 9 in hepatocellular carcinoma. , 1999, 81, 319-324.		36
152	Detection of recurrent chromosomal gains and losses in primary nasopharyngeal carcinoma by comparative genomic hybridisation. , 1999, 82, 498-503.		109
153	Nasopharyngeal carcinoma cell line (C666-1) consistently harbouring Epstein-Barr virus. International Journal of Cancer, 1999, 83, 121-126.	2.3	341
154	Two distinct regions of deletion on chromosome 13q in primary nasopharyngeal carcinoma. , 1999, 83, 305-308.		31
155	Molecular Analysis of Microdissected de novo Glioblastomas and Paired Astrocytic Tumors. Journal of Neuropathology and Experimental Neurology, 1999, 58, 120-128.	0.9	43
156	Nasopharyngeal carcinoma cell line (C666-1) consistently harbouring Epstein-Barr virus. , 1999, 83, 121.		2
157	Characterization of a New EBV-Associated Nasopharyngeal Carcinoma Cell Line. Cancer Genetics and Cytogenetics, 1998, 101, 83-88.	1.0	39
158	Specific latent membrane protein 1 gene sequences in type 1 and type 2 Epstein-Barr virus from nasopharyngeal carcinoma in Hong Kong. International Journal of Cancer, 1998, 76, 399-406.	2.3	68
159	Analysis of cell cycle regulators: p16INK4A, pRb, and CDK4 in low- and high-grade meningiomas. Human Pathology, 1998, 29, 1200-1207.	1.1	35
160	Loss of heterozygosity of chromosome 14q in low- and high-grade meningiomas. Human Pathology, 1997, 28, 779-785.	1.1	55
161	Prevalence of LMP1 deletion variant of Epstein-Barr virus in nasopharyngeal carcinoma and gastric tumors in Hong Kong. , 1996, 66, 711-712.		54
162	Prevalence of LMP1 deletion variant of Epsteinâ€Barr virus in nasopharyngeal carcinoma and gastric tumors in Hong Kong. International Journal of Cancer, 1996, 66, 711-712.	2.3	1

#	Article	IF	CITATIONS
163	Nasopharyngeal carcinoma: Genetic changes, epstein–barr virus infection, or both: A clinical and molecular study of 36 patients. Cancer, 1993, 72, 2873-2878.	2.0	55
164	Loss of heterozygosity on the short arm of chromosome 3 in nasopharyngeal carcinoma. Cancer Genetics and Cytogenetics, 1991, 54, 91-99.	1.0	92