Harald D H Stöver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4065797/publications.pdf

Version: 2024-02-01

102 papers 5,269 citations

37 h-index

108046

97045 71 g-index

104 all docs

104 docs citations

104 times ranked 5662 citing authors

#	Article	IF	CITATIONS
1	Erythro-VLPs: Anchoring SARS-CoV-2 spike proteins in erythrocyte liposomes. PLoS ONE, 2022, 17, e0263671.	1.1	10
2	Neopentyl Esters as Robust Linkers for Introducing Functionality to Bis-MPA Dendrimers. Macromolecules, 2022, 55, 270-275.	2.2	2
3	Exploring the Impact of Zwitterions in Discrete Charge Arrangements of Stimuli-Responsive Polyelectrolyte Complexes. ACS Applied Polymer Materials, 2022, 4, 5035-5046.	2.0	2
4	Lightly Cross-Linked Microgels by Precipitation Polymerization of Maleic Anhydride and Styrenic Monomers. ACS Applied Polymer Materials, 2022, 4, 5680-5687.	2.0	2
5	Curcumin and Homotaurine Suppress Amyloid-β _{25–35} Aggregation in Synthetic Brain Membranes. ACS Chemical Neuroscience, 2021, 12, 1395-1405.	1.7	10
6	Investigating the Effects of Charge Arrangement in Stimuli-Responsive Polyelectrolytes. Macromolecules, 2021, 54, 11427-11438.	2,2	4
7	Hybrid Erythrocyte Liposomes: Functionalized Red Blood Cell Membranes for Molecule Encapsulation. Advanced Biology, 2020, 4, e1900185.	3.0	17
8	Tunable polymer microgel particles and their study using microscopy and realâ€ŧime deformability cytometry. Journal of Polymer Science, 2020, 58, 2317-2326.	2.0	3
9	A Mechanistic Study of the Hydrolysis of Poly[$\langle i \rangle N \langle i \rangle, \langle i \rangle N \langle i \rangle$ -(dimethylamino)ethyl acrylates] as Charge-Shifting Polycations. Macromolecules, 2020, 53, 3514-3523.	2.2	19
10	Charge-Shifting Polycations Based on <i>N</i> , <i>N</i> -(dimethylamino)ethyl Acrylate for Improving Cytocompatibility During DNA Delivery. ACS Omega, 2020, 5, 9114-9122.	1.6	6
11	Synthetic Polyampholytes as Macromolecular Cryoprotective Agents. Langmuir, 2019, 35, 1807-1817.	1.6	32
12	Quantifying cellular protrusion in alginate capsules with covalently crosslinked shells. Journal of Microencapsulation, 2019, 36, 421-431.	1.2	1
13	Crosslinked Hydrogel Capsules for Cell Encapsulation Formed Using Amino/Betaine Dual-Functional Semibatch Copolymers. ACS Applied Polymer Materials, 2019, 1, 2055-2067.	2.0	7
14	Synthetic hydrogels formed by thiol–ene crosslinking of vinyl sulfone-functional poly(methyl vinyl) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf ! 22
15	Self-Cross-Linking p(APM- <i>co</i> -AA) Microstructured Thin Films as Biomimetic Scaffolds. ACS Applied Bio Materials, 2018, 1, 1512-1522.	2.3	7
16	Charge-Shifting Polycations with Tunable Rates of Hydrolysis: Effect of Backbone Substituents on Poly[2-(dimethylamino)ethyl acrylates]. Macromolecules, 2018, 51, 5752-5761.	2.2	9
17	Multistimuli responsive ternary polyampholytes: Formation and crosslinking of coacervates. Journal of Polymer Science Part A, 2016, 54, 2109-2118.	2.5	12
18	Structured poly(divinylbenzene- <i>co</i> -chloromethylstyrene) microspheres by thermal imprinting precipitation polymerization. Journal of Polymer Science Part A, 2016, 54, 1159-1166.	2.5	7

#	Article	IF	CITATIONS
19	Preparation and study of multi-responsive polyampholyte copolymers of N-(3-aminopropyl)methacrylamide hydrochloride and acrylic acid. RSC Advances, 2016, 6, 41522-41531.	1.7	19
20	Cross-Linked Hydrogels Formed through Diels–Alder Coupling of Furan- and Maleimide-Modified Poly(methyl vinyl ether- <i>alt</i> -maleic acid). Langmuir, 2016, 32, 1863-1870.	1.6	34
21	Synthetic polycations with controlled charge density and molecular weight as building blocks for biomaterials. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 351-369.	1.9	9
22	Tunable Hydrogel Thin Films from Reactive Synthetic Polymers as Potential Two-Dimensional Cell Scaffolds. Langmuir, 2015, 31, 5623-5632.	1.6	14
23	Synthesis and Properties of Charge-Shifting Polycations: Poly[3-aminopropylmethacrylamide-co-2-(dimethylamino)ethyl acrylate]. Macromolecules, 2015, 48, 8958-8970.	2.2	16
24	Preparation and characterization of narrow compositional distribution polyampholytes as potential biomaterials: Copolymers of <i>N</i> â€aminopropyl)methacrylamide hydrochloride (APM) and methacrylic acid (MAA). Journal of Polymer Science Part A, 2015, 53, 353-365.	2.5	20
25	Systematic study of alginate-based microcapsules by micropipette aspiration and confocal fluorescence microscopy. Materials Science and Engineering C, 2013, 33, 4295-4304.	3.8	34
26	Synthesis and properties of waterâ€soluble azlactone copolymers. Journal of Polymer Science Part A, 2012, 50, 4674-4685.	2.5	14
27	Improving covalent cell encapsulation with temporarily reactive polyelectrolytes. Journal of Materials Science: Materials in Medicine, 2012, 23, 181-193.	1.7	15
28	Thermally Responsive 2-Hydroxyethyl Methacrylate Polymers: Soluble–Insoluble and Soluble–Insoluble–Soluble Transitions. Macromolecules, 2011, 44, 8962-8971.	2.2	86
29	Poly(methyl vinyl ether-alt-maleic acid) Polymers for Cell Encapsulation. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 2127-2145.	1.9	18
30	High <i>T</i> _g microspheres by dispersion copolymerization of <i>N</i> êphenylmaleimide with styrenic or alkyl vinyl ether monomers. Journal of Polymer Science Part A, 2011, 49, 192-202.	2.5	12
31	Polyurea microcapsules: Surface modification and capsule size control. Journal of Polymer Science Part A, 2011, 49, 3038-3047.	2.5	25
32	Layer-by-layer deposition of clay and a polycation to control diffusive release from polyurea microcapsules. Journal of Membrane Science, 2011, 369, 68-76.	4.1	27
33	Cross-Linked Microcapsules Formed From Self-Deactivating Reactive Polyelectrolytes. Langmuir, 2010, 26, 4916-4924.	1.6	21
34	Synthetic Reactive Polyelectrolytes for Cell Encapsulation. ACS Symposium Series, 2010, , 131-159.	0.5	3
35	Pickering Emulsion Templated Interfacial Atom Transfer Radical Polymerization for Microencapsulation. Langmuir, 2010, 26, 17926-17935.	1.6	37
36	Pickering Emulsion Templated Layer-by-Layer Assembly for Making Microcapsules. Langmuir, 2010, 26, 15554-15560.	1.6	56

#	Article	IF	CITATIONS
37	Mechanically enhanced microcapsules for cellular gene therapy. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 90B, 350-361.	1.6	20
38	Core-Cross-Linked Alginate Microcapsules for Cell Encapsulation. Biomacromolecules, 2009, 10, 1365-1373.	2.6	47
39	A New Approach to Studying Microcapsule Wall Growth Mechanisms. Macromolecules, 2009, 42, 2428-2432.	2.2	32
40	Doubly pH-Responsive Pickering Emulsion. Langmuir, 2008, 24, 13237-13240.	1.6	112
41	Self-Cross-Linking Polyelectrolyte Complexes for Therapeutic Cell Encapsulation. Biomacromolecules, 2008, 9, 2292-2300.	2.6	30
42	Chemically Selective Soft X-ray Direct-Write Patterning of Multilayer Polymer Films. Journal of Physical Chemistry C, 2007, 111, 16330-16338.	1.5	18
43	Chemically selective soft X-ray patterning of polymers. Journal of Synchrotron Radiation, 2007, 14, 181-190.	1.0	25
44	Polyelectrolyte complexation between poly(methacrylic acid, sodium salt) and poly(diallyldimethylammonium chloride) or poly[2â€(methacryloyloxyethyl) trimethylammonium chloride]. Journal of Polymer Science Part A, 2007, 45, 4129-4143.	2.5	21
45	Multilayered Polymer Microspheres by Thermal Imprinting during Microsphere Growth. Journal of the American Chemical Society, 2006, 128, 240-244.	6.6	46
46	End Group Effect on the Thermal Response of Narrow-Disperse Poly(N-isopropylacrylamide) Prepared by Atom Transfer Radical Polymerization. Macromolecules, 2006, 39, 2275-2283.	2.2	431
47	Interfacial living radical copolymerization of oil- and water-soluble comonomers to form composite polymer capsules. Journal of Polymer Science Part A, 2006, 44, 156-171.	2.5	16
48	Chemical Mapping of Polymer Microstructure Using Soft X-ray Spectromicroscopy. Australian Journal of Chemistry, 2005, 58, 423.	0.5	28
49	Temperature-sensitive hydrogel microspheres formed by liquid-liquid phase transitions of aqueous solutions of poly(N,N-dimethylacrylamide-co-allyl methacrylate). Journal of Polymer Science Part A, 2005, 43, 1641-1648.	2.5	13
50	Thermoresponsive copolymers of methacrylic acid and poly(ethylene glycol) methyl ether methacrylate. Journal of Polymer Science Part A, 2005, 43, 6095-6104.	2.5	79
51	Quantitative Chemical Mapping of Nanostructured "Onionlike―Poly(methyl methacrylate)/Polystyrene Composite Particles by Soft X-ray Microscopy. Macromolecules, 2005, 38, 542-551.	2.2	29
52	Thermal Response of Narrow-Disperse Poly(N-isopropylacrylamide) Prepared by Atom Transfer Radical Polymerization. Macromolecules, 2005, 38, 5937-5943.	2.2	472
53	Probing the Influence of Polymer Architecture on Liquidâ^'Liquid Phase Transitions of Aqueous Poly(N,N-dimethylacrylamide) Copolymer Solutions. Macromolecules, 2005, 38, 2109-2115.	2.2	29
54	Composite Tectocapsules Containing Porous Polymer Microspheres as Release Gates. Macromolecules, 2005, 38, 2903-2910.	2.2	53

#	Article	IF	CITATIONS
55	Well-Defined Amphiphilic Thermosensitive Copolymers Based on Poly(ethylene glycol) Tj ETQq1 1 0.784314 rgBT Macromolecules, 2004, 37, 5219-5227.	/Overlock 2.2	10 Tf 50 74 123
56	Composite tectocapsules via the self-assembly of functionalized poly(divinylbenzene) microspheres. Pure and Applied Chemistry, 2004, 76, 1365-1374.	0.9	8
57	Integrating near-edge X-ray absorption fineÂstructure (NEXAFS) microscopy and crystallography: the effects of molecular order. Journal of Synchrotron Radiation, 2003, 10, 265-268.	1.0	15
58	Hydrogel Microspheres by Thermally Induced Coacervation of Poly(N,N-dimethylacrylamide-co-glycidyl) Tj ETQq0 (0 <u>0 rg</u> BT /C)verlock 10 45
59	Formation and Morphology of Methacrylic Polymers and Block Copolymers Tethered on Polymer Microspheres. Macromolecules, 2003, 36, 1808-1814.	2.2	73
60	Grafting of Poly(Îμ-caprolactone) and Poly(Îμ-caprolactone-block-(dimethylamino)ethyl methacrylate) from Polymer Microspheres by Ring-Opening Polymerization and ATRP. Macromolecules, 2003, 36, 7439-7445.	2.2	66
61	Formation of Tectocapsules by Assembly and Cross-linking of Poly(divinylbenzene-alt-maleic) Tj ETQq1 1 0.78431	4 rgBT /Ov	erlock 10 T
62	Photostimulated Phase Separation Encapsulation. Macromolecules, 2003, 36, 9836-9839.	2.2	28
63	Polymeric Capsules Prepared by in Situ Synthesis and Cross-Linking of Amphiphilic Copolymer by Atom Transfer Radical Polymerization. Macromolecules, 2003, 36, 1793-1801.	2.2	37
64	Hydrogel Microspheres Formed by Complex Coacervation of Partially MPEG-Grafted Poly(styrene-alt-maleic anhydride) with PDADMAC and Cross-Linking with Polyamines. Macromolecules, 2003, 36, 8773-8779.	2.2	32
65	Mechanism of Self-Assembly and Rupture of Cross-Linked Microspheres and Microgels at the Oilâ°'Water Interface. Langmuir, 2003, 19, 10077-10080.	1.6	37
66	Half-life of 176Lu. Physical Review C, 2003, 67, .	1.1	24
67	New Materials Using Atom Transfer Radical Polymerization: Microcapsules Containing Polar Core Oil. ACS Symposium Series, 2003, , 299-315.	0.5	5
68	Grafting of Poly(alkyl (meth)acrylates) from Swellable Poly(DVB80-co-HEMA) Microspheres by Atom Transfer Radical Polymerization. Macromolecules, 2002, 35, 7612-7619.	2.2	75
69	Grafting of Polystyrene from Narrow Disperse Polymer Particles by Surface-Initiated Atom Transfer Radical Polymerization. Macromolecules, 2002, 35, 6828-6834.	2.2	117
70	Poly(divinylbenzene-alt-maleic anhydride) Microgels:Â Intermediates to Microspheres and Macrogels in Cross-Linking Copolymerization. Macromolecules, 2002, 35, 2728-2735.	2.2	67
71	Polyferrocenylsilane Microspheres:Â Synthesis, Mechanism of Formation, Size and Charge Tunability, Electrostatic Self-Assembly, and Pyrolysis to Spherical Magnetic Ceramic Particles. Journal of the American Chemical Society, 2002, 124, 12522-12534.	6.6	112
72	Cross-Linked Poly(methacrylic acid-co-poly(ethylene oxide) methyl ether methacrylate) Microspheres and Microgels Prepared by Precipitation Polymerization:Â A Morphology Study. Macromolecules, 2002, 35, 9983-9989.	2.2	81

#	Article	IF	CITATIONS
73	Thermosensitive and pH-Sensitive Polymers Based on Maleic Anhydride Copolymers. Macromolecules, 2002, 35, 10178-10181.	2.2	77
74	Polymer microcapsules by interfacial polyaddition between styrene–maleic anhydride copolymers and amines. Journal of Membrane Science, 2002, 209, 421-432.	4.1	51
75	Microcapsules from styrene–maleic anhydride copolymers: study of morphology and release behavior. Journal of Membrane Science, 2002, 209, 433-444.	4.1	24
76	Magnetic Nanocomposites:  Preparation and Characterization of Polymer-Coated Iron Nanoparticles. Chemistry of Materials, 2002, 14, 4752-4761.	3.2	231
77	Polyferrocenylsilane and Magnetic Ceramic Microspheres. Advanced Materials, 2001, 13, 732-736.	11.1	62
78	Quantitative Compositional Mapping of Coreâ^'Shell Polymer Microspheres by Soft X-ray Spectromicroscopy. Macromolecules, 2001, 34, 4424-4429.	2.2	46
79	Poly(divinylbenzene) Microspheres as an Intermediate Morphology between Microgel, Macrogel, and Coagulum in Cross-Linking Precipitation Polymerization. Macromolecules, 2001, 34, 4534-4541.	2.2	110
80	Monodisperse Cross-Linked Coreâ^Shell Polymer Microspheres by Precipitation Polymerization. Macromolecules, 2000, 33, 4354-4360.	2.2	184
81	Monodisperse poly(chloromethylstyrene-co-divinylbenzene) microspheres by precipitation polymerization. Journal of Polymer Science Part A, 1999, 37, 2295-2303.	2.5	89
82	Growth Mechanism of Poly(divinylbenzene) Microspheres in Precipitation Polymerization. Macromolecules, 1999, 32, 2838-2844.	2.2	287
83	Porous monodisperse poly(divinylbenzene) microspheres by precipitation polymerization. Journal of Polymer Science Part A, 1998, 36, 1543-1551.	2.5	157
84	Synthesis of divinylbenzene-maleic anhydride microspheres using precipitation polymerization. Journal of Polymer Science Part A, 1998, 36, 2223-2227.	2.5	58
85	Selective Functionalization of Poly(4-methylstyrene). Macromolecules, 1997, 30, 6451-6457.	2.2	6
86	A New Route to (Chloromethyl)styrene Polymers. Macromolecules, 1997, 30, 6712-6714.	2.2	8
87	Selective oxidation of poly(4-methylstyrene). Journal of Polymer Science Part A, 1995, 33, 957-965.	2.5	5
88	High-yield synthesis and characterization of 1,2-bis(p-vinylphenyl)ethane. Journal of Polymer Science Part A, 1994, 32, 2023-2027.	2.5	19
89	Novel polystyryl resins for size exclusion chromatography. Journal of Polymer Science Part A, 1994, 32, 2029-2038.	2.5	35
90	Living cationic polymerization of styrene monomers. Macromolecular Rapid Communications, 1994, 15, 425-432.	2.0	18

#	Article	IF	CITATION
91	Thin-film micropatterning using polymer microspheres. Chemistry of Materials, 1994, 6, 156-159.	3.2	91
92	Highly crosslinked micron-range polymer microspheres by dispersion polymerization of divinylbenzene. Journal of Polymer Science Part A, 1993, 31, 2473-2479.	2.5	65
93	Synthesis of monodisperse poly(divinylbenzene) microspheres. Journal of Polymer Science Part A, 1993, 31, 3257-3263.	2.5	277
94	Cobalt-catalyzed oxidation of poly(4-methylstyrene). Macromolecules, 1991, 24, 6340-6342.	2.2	16
95	Design of polymeric imaging materials based on electrophilic aromatic substitution: model studies. Macromolecules, 1991, 24, 1741-1745.	2.2	15
96	Chemically amplified imaging materials based on electrophilic aromatic substitution: poly[4-(acetoxymethyl)styrene-co-4-hydroxystyrene]. Macromolecules, 1991, 24, 1746-1754.	2.2	38
97	NMR characterization of crosslinked polystyrene gels. Macromolecules, 1991, 24, 883-888.	2.2	38
98	Polymeric reagents: preparation and characterization of novel solid-phase, silylating agents derived from copolymers containing 4-[3′-(dimethyl phenyl silyl)-propyl]-styrene. Polymer Bulletin, 1991, 25, 575-582.	1.7	8
99	Novel photoresist design based on electrophilic aromatic substitution. Polymer Engineering and Science, 1989, 29, 960-964.	1.5	19
100	Direct polarization carbon-13 and proton magic angle spinning NMR in the characterization of solvent-swollen gels. Macromolecules, 1989, 22, 1574-1576.	2.2	31
101	Crown ether-cation decomplexation mechanics. Sodium-23 NMR studies of the sodium cation complexes with dibenzo-24-crown-8 and dibenzo-18-crown-6 in nitromethane and acetonitrile. Journal of the American Chemical Society, 1987, 109, 7293-7301.	6.6	33
102	The first direct formation of a Grignard reagent on an insoluble polymer. Journal of Organic Chemistry, 1987, 52, 4644-4645.	1.7	39