Milad Frounchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4065626/publications.pdf

Version: 2024-02-01

24 papers 207 citations

8 h-index 14 g-index

24 all docs

24 docs citations

times ranked

24

263 citing authors

#	Article	IF	CITATIONS
1	On Design of Wideband Compact-Size Ka/Q-Band High-Power Amplifiers. IEEE Transactions on Microwave Theory and Techniques, 2016, 64, 1831-1842.	4.6	26
2	Waveform Engineering at Gate Node of Class-J Power Amplifiers. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 2409-2417.	4.6	23
3	Dual-Band Design of Integrated Class-J Power Amplifiers in GaAs pHEMT Technology. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 3034-3045.	4.6	22
4	A 60-GHz SiGe Radiometer Calibration Switch Utilizing a Coupled Avalanche Noise Source. IEEE Microwave and Wireless Components Letters, 2020, 30, 417-420.	3.2	18
5	Optimizing Optical Parameters to Facilitate Correlation of Laser- and Heavy-Ion-Induced Single-Event Transients in SiGe HBTs. IEEE Transactions on Nuclear Science, 2019, 66, 359-367.	2.0	15
6	Optical Single-Event Transients Induced in Integrated Silicon-Photonic Waveguides by Two-Photon Absorption. IEEE Transactions on Nuclear Science, 2021, 68, 785-792.	2.0	14
7	A Low-Loss Broadband Quadrature Signal Generation Network for High Image Rejection at Millimeter-Wave Frequencies. IEEE Transactions on Microwave Theory and Techniques, 2018, 66, 5336-5346.	4.6	13
8	A \$Ka\$-Band SiGe Bootstrapped Gilbert Frequency Doubler With 26.2% PAE. IEEE Microwave and Wireless Components Letters, 2018, 28, 1122-1124.	3.2	9
9	Triaxial Balun With Inherent Harmonic Reflection for Millimeter-Wave Frequency Doublers. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 2822-2831.	4.6	8
10	Highly reliable 10â€W X/Kuâ€band pHEMT monolithic microwave integrated circuit power amplifier. IET Microwaves, Antennas and Propagation, 2016, 10, 656-663.	1.4	7
11	Class-J ₂₃ Power Amplifiers. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66, 3664-3675.	5.4	7
12	Millimeter-Wave SiGe Radiometer Front End With Transformer-Based Dicke Switch and On-Chip Calibration Noise Source. IEEE Journal of Solid-State Circuits, 2021, 56, 1464-1474.	5.4	7
13	A V-Band MMIC Doubler Using a 4th Harmonic Mixing Technique. IEEE Microwave and Wireless Components Letters, 2016, 26, 355-357.	3.2	6
14	A V-Band SiGe Image-Reject Receiver Front-End for Atmospheric Remote Sensing. , 2018, , .		6
15	Response of Waveguide-Integrated Germanium-on-Silicon p-i-n Photodiodes to Neutron Displacement Damage. IEEE Transactions on Nuclear Science, 2020, 67, 296-304.	2.0	6
16	High Responsivity Ge Phototransistor in Commercial CMOS Si-Photonics Platform for Monolithic Optoelectronic Receivers. IEEE Electron Device Letters, 2021, 42, 196-199.	3.9	6
17	A D-band SiGe Frequency Doubler with a Harmonic Reflector Embedded in a Triaxial Balun. , 2020, , .		4
18	Electronic-to-Photonic Single-Event Transient Propagation in a Segmented Mach–Zehnder Modulator in a Si/SiGe Integrated Photonics Platform. IEEE Transactions on Nuclear Science, 2020, 67, 260-267.	2.0	3

#	Article	IF	CITATIONS
19	A SiGe Millimeter-Wave Front-End for Remote Sensing and Imaging. , 2020, , .		3
20	Micronimbus: A cubesat temperature profilometer for the earth's atmosphere using a single-chip 60 GHZ sige radiometer. , $2017, \dots$		2
21	MicroNimbus: A CubeSat Mission for Millimeter-Wave Atmospheric Temperature Profiling. , 2018, , .		1
22	Dual-Band Millimeter-Wave Quadrature LO Generation With a Common-Centroid Floorplan. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 260-264.	3.0	1
23	Outstanding Conference Paper Award: 2018 IEEE Nuclear and Space Radiation Effects Conference. IEEE Transactions on Nuclear Science, 2019, 66, 13-15.	2.0	O
24	A Co-integrated Silicon-Based Electronic-Photonic Wideband, High-Power Signal Source. , 2020, , .		0