Kevser SÃ-zgen BaÅ**ž**an

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4064618/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antioxidant Activity and Capacity Measurement. Reference Series in Phytochemistry, 2022, , 709-773.	0.2	7
2	Determination of Total Antioxidant Capacities of Algal Pigments in Seaweed by the Combination of High-Performance Liquid Chromatography (HPLC) with A Cupric Reducing Antioxidant Capacity (CUPRAC) Assay. Analytical Letters, 2021, 54, 2239-2258.	1.0	11
3	HPLC Detection and Antioxidant Capacity Determination of Brown, Red and Green Algal Pigments in Seaweed Extracts. Journal of Chromatographic Science, 2021, 59, 325-337.	0.7	18
4	Antioxidant Activity and Capacity Measurement. Reference Series in Phytochemistry, 2021, , 1-66.	0.2	2
5	High performance liquid chromatographic method with post-column detection for quantification of reducing sugars in foods. Journal of Chromatography A, 2021, 1660, 462664.	1.8	6
6	A novel gold nanocluster–based fluorometric biosensor for measuring prooxidant activity with a large Stokes shift. Talanta, 2020, 208, 120425.	2.9	17
7	Novel Iron(III)â^'Induced Prooxidant Activity Measurement Using a Solid Protein Sensor in Comparison with a Copper(II)â^'Induced Assay. Analytical Letters, 2020, 53, 1489-1503.	1.0	4
8	Valorization of Red Onion Peels for Quercetin Recovery Using Quercetin-Imprinted Polymer. Journal of Chromatographic Science, 2020, 58, 163-170.	0.7	11
9	Orange. , 2020, , 353-376.		2
10	Comparison of antioxidant capacities and antioxidant components of commercial bitter melon (Momordicacharantia L.) products. Turkish Journal of Chemistry, 2020, 44, 1663-1673.	0.5	12
11	Protein-Protected Gold Nanocluster-Based Biosensor for Determining the Prooxidant Activity of Natural Antioxidant Compounds. ACS Omega, 2019, 4, 2455-2462.	1.6	17
12	Identification and quantification of some phytohormones in seaweeds using UPLC-MS/MS. Journal of Liquid Chromatography and Related Technologies, 2019, 42, 475-484.	0.5	26
13	A simple automated microplate method for determining reducing sugars in food extracts and synthetic serum using cupric-neocuproine as reductant. Turkish Journal of Chemistry, 2018, 42, .	0.5	1
14	Novel Protein-Based Solid-Biosensor for Determining Pro-oxidant Activity of Phenolic Compounds. Journal of Agricultural and Food Chemistry, 2017, 65, 5821-5830.	2.4	15
15	Preparation, characterization and usage of molecularly imprinted polymer for the isolation of quercetin from hydrolyzed nettle extract. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1017-1018, 89-100.	1.2	39
16	Spectrophotometric total reducing sugars assay based on cupric reduction. Talanta, 2016, 147, 162-168.	2.9	64
17	Assessment of the contributions of anthocyanins to the total antioxidant capacities of plant foods. European Food Research and Technology, 2015, 241, 529-541.	1.6	11
18	Determination of total antioxidant capacity of milk by CUPRAC and ABTS methods with separate characterisation of milk protein fractions. Journal of Dairy Research, 2015, 82, 177-184.	0.7	18

#	Article	IF	CITATIONS
19	Off-Line HPLC Integrated to Total Antioxidant Capacity Measurement of Beverages. , 2014, , 265-276.		1
20	Spectrophotometric and Chromatographic Assessment of Contributions of Carotenoids and Chlorophylls to the Total Antioxidant Capacities of Plant Foods. Journal of Agricultural and Food Chemistry, 2013, 61, 11371-11381.	2.4	35
21	Comparison of antioxidant capacity and phenolic composition of peel and flesh of some apple varieties. Journal of the Science of Food and Agriculture, 2013, 93, 867-875.	1.7	56
22	Protein–Incorporated Serum Total Antioxidant Capacity Measurement by a Modified CUPRAC (CUPRIC) Tj ETQo	0.0 0 rgB ⁻ 1.0	T /Overlock I 46
23	A comprehensive review of CUPRAC methodology. Analytical Methods, 2011, 3, 2439.	1.3	124
24	Comparison of total antioxidant capacity and phenolic composition of some apple juices with combined HPLC–CUPRAC assay. Food Chemistry, 2010, 120, 1201-1209.	4.2	113
25	The preparation and characterization of poly(acrylic acidâ€coâ€methacrylamide) gel and its use in the nonâ€competitive heavy metal removal. Polymers for Advanced Technologies, 2009, 20, 165-172.	1.6	43
26	Modified cupric reducing antioxidant capacity (CUPRAC) assay for measuring the antioxidant capacities of thiol-containing proteins in admixture with polyphenols. Talanta, 2009, 79, 344-351.	2.9	48
27	Combined HPLC-CUPRAC (cupric ion reducing antioxidant capacity) assay of parsley, celery leaves, and nettle. Talanta, 2008, 77, 304-313.	2.9	74
28	Spectrophotometric total protein assay with copper(II)–neocuproine reagent in alkaline medium. Talanta, 2006, 68, 1601-1609.	2.9	31
29	Spectrophotometric determination of ascorbic acid using copper(II)?neocuproine reagent in beverages and pharmaceuticals. Talanta, 2005, 65, 1226-1232.	2.9	120
30	Second derivative spectrophotometric method for simultaneous determination of cobalt, nickel and iron using 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol. Talanta, 2004, 62, 971-976.	2.9	28

31	Spectrophotometric determination of vitamin E (α-tocopherol) using copper(II)-neocuproine reagent. Talanta, 1997, 44, 249-255.	2.9	48
32	The interaction of antitumor-active anthraquinones with biologically important redox couples: I. Spectrophotometric investigation of the interaction of carminic acid and mitoxantrone with the iron(II, III) and copper(I, II) redox couples. Journal of Inorganic Biochemistry, 1996, 61, 79-96.	1.5	18