Albert P H J Schenning

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4064217/publications.pdf

Version: 2024-02-01

240 papers

18,727 citations

63 h-index

17405

129 g-index

254 all docs

254 docs citations

times ranked

254

15435 citing authors

#	Article	IF	CITATIONS
1	Hydrogen-Bonded Supramolecular Liquid Crystal Polymers: Smart Materials with Stimuli-Responsive, Self-Healing, and Recyclable Properties. Chemical Reviews, 2022, 122, 4946-4975.	23.0	161
2	4D Printing of Liquid Crystals: What's Right for Me?. Advanced Materials, 2022, 34, e2104390.	11.1	75
3	Oneâ€Pot Synthesis of Meltâ€Processable Supramolecular Soft Actuators. Angewandte Chemie, 2022, 134, .	1.6	2
4	Temperatureâ€Responsive 4D Liquid Crystal Microactuators Fabricated by Direct Laser Writing by Twoâ€Photon Polymerization. Small Structures, 2022, 3, 2100158.	6.9	32
5	Oneâ€Pot Synthesis of Meltâ€Processable Supramolecular Soft Actuators. Angewandte Chemie - International Edition, 2022, 61, .	7.2	25
6	Water Barrier Properties of Resinâ€Stabilized Waterborne Coatings for Paperboard. Macromolecular Materials and Engineering, 2022, 307, 2100829.	1.7	9
7	A pH-Responsive Liquid Crystal Hydrogel Actuator with Calcium-Induced Reprogrammable Shape Fixing. ACS Applied Polymer Materials, 2022, 4, 1298-1304.	2.0	16
8	Switchable gas permeability of a polypropyleneâ€liquid crystalline composite film. Journal of Polymer Science, 2022, 60, 803-811.	2.0	2
9	Optical Indicators based on Structural Colored Polymers. Advanced Science, 2022, 9, e2200399.	5.6	22
10	Patterned and Collective Motion of Densely Packed Tapered Multiresponsive Liquid Crystal Cilia. Advanced Materials Technologies, 2022, 7, .	3.0	7
11	Steering cholesteric liquid crystal elastomer properties by positional variation of chiral molecular building blocks. , 2022, , .		1
12	Image encoding with unconventional appearance through direct ink writing of a cholesteric liquid crystal oligomer ink., 2022,,.		1
13	Thermochromic Multicolored Photonic Coatings with Light Polarization- and Structural Color-Dependent Changes. ACS Applied Polymer Materials, 2022, 4, 537-545.	2.0	10
14	Pigmented Structural Color Actuators Fueled by Near-Infrared Light. ACS Applied Materials & Samp; Interfaces, 2022, 14, 20093-20100.	4.0	16
15	Direct Ink Writing of 4D Structural Colors. Advanced Functional Materials, 2022, 32, .	7.8	43
16	Direct Ink Writing of Recyclable Supramolecular Soft Actuators. ACS Macro Letters, 2022, 11, 935-940.	2.3	13
17	Self-assembling liquid crystals as building blocks to design nanoporous membranes suitable for molecular separations. Journal of Membrane Science, 2021, 620, 118849.	4.1	28
18	4D Chiral Photonic Actuators with Switchable Hyperâ€Reflectivity. Advanced Functional Materials, 2021, 31, 2007887.	7.8	45

#	Article	IF	Citations
19	High Thermal Conductivity in Anisotropic Aligned Polymeric Materials. ACS Applied Polymer Materials, 2021, 3, 578-587.	2.0	26
20	'Smart' lightâ€reflective windows based on temperature responsive twisted nematic liquid crystal polymers. Journal of Polymer Science, 2021, 59, 1278-1284.	2.0	14
21	3D Anisotropic Polyethylene as Lightâ€Responsive Grippers and Surfing Divers. Advanced Functional Materials, 2021, 31, 2100465.	7.8	16
22	A foldable compact actuator based on an oxetane liquid crystal network. Journal of Applied Physics, 2021, 129, 075101.	1.1	5
23	Smectic Liquid Crystalline Polymer Membranes with Aligned Nanopores in an Anisotropic Scaffold. ACS Applied Materials & Samp; Interfaces, 2021, 13, 7592-7599.	4.0	16
24	Wavelengthâ€Selective Photopolymerization of Hybrid Acrylateâ€Oxetane Liquid Crystals. Angewandte Chemie - International Edition, 2021, 60, 10935-10941.	7.2	32
25	Wavelengthâ€ 5 elective Photopolymerization of Hybrid Acrylateâ€Oxetane Liquid Crystals. Angewandte Chemie, 2021, 133, 11030-11036.	1.6	3
26	NIR–vis–UV Lightâ€Responsive High Stressâ€Generating Polymer Actuators with a Reduced Creep Rate. Macromolecular Rapid Communications, 2021, 42, 2100157.	2.0	1
27	Triple-Shape-Memory Soft Actuators from an Interpenetrating Network of Hybrid Liquid Crystals. Macromolecules, 2021, 54, 5410-5416.	2.2	18
28	Enhanced Thermal Conductivity in Oriented Polyvinyl Alcohol/Graphene Oxide Composites. ACS Applied Materials & Samp; Interfaces, 2021, 13, 28864-28869.	4.0	41
29	Temperatureâ€Responsive Photonic Devices Based on Cholesteric Liquid Crystals. Advanced Photonics Research, 2021, 2, 2100016.	1.7	55
30	Monodisperse Liquid Crystalline Polymer Shells with Programmable Alignment and Shape Prepared by Seeded Dispersion Polymerization. Macromolecules, 2021, 54, 6052-6060.	2.2	4
31	Color–Tunable Triple–State "Smart―Window. Advanced Photonics Research, 2021, 2, 2100134.	1.7	6
32	Anisotropic Iridescence and Polarization Patterns in a Direct Ink Written Chiral Photonic Polymer. Advanced Materials, 2021, 33, e2103309.	11.1	43
33	Liquidâ€Crystalline Polymer Particles Prepared by Classical Polymerization Techniques. Chemistry - A European Journal, 2021, 27, 14168-14178.	1.7	11
34	Reversible Thermochromic Photonic Coatings with a Protective Topcoat. ACS Applied Materials & Samp; Interfaces, 2021, 13, 3153-3160.	4.0	34
35	Electrothermal Color Tuning of Cholesteric Liquid Crystals Using Interdigitated Electrode Patterns. Advanced Electronic Materials, 2021, 7, 2000958.	2.6	13
36	Anisotropic Iridescence and Polarization Patterns in a Direct Ink Written Chiral Photonic Polymer (Adv. Mater. 39/2021). Advanced Materials, 2021, 33, 2170310.	11.1	0

#	Article	IF	Citations
37	On the Order and Orientation in Liquid Crystalline Polymer Membranes for Gas Separation. Chemistry of Materials, 2021, 33, 8323-8333.	3.2	12
38	Flowerâ€Like Colloidal Particles through Precipitation Polymerization of Redoxâ€Responsive Liquid Crystals. Angewandte Chemie - International Edition, 2021, 60, 27026-27030.	7.2	10
39	Patterned Actuators via Direct Ink Writing of Liquid Crystals. ACS Applied Materials & Direct Ink Writing of Liquid Crystals. ACS Applied Materials & Direct Ink Writing of Liquid Crystals. ACS Applied Materials & Direct Ink Writing of Liquid Crystals. ACS Applied Materials & Direct Ink Writing of Liquid Crystals. ACS Applied Materials & Direct Ink Writing of Liquid Crystals. ACS Applied Materials & Direct Ink Writing of Liquid Crystals. ACS Applied Materials & Direct Ink Writing of Liquid Crystals. ACS Applied Materials & Direct Ink Writing of Liquid Crystals. ACS Applied Materials & Direct Ink Writing of Liquid Crystals. ACS Applied Materials & Direct Ink Writing of Liquid Crystals. ACS Applied Materials & Direct Ink Writing of Liquid Crystals. ACS Applied Materials & Direct Ink Writing Of Liquid Crystals. ACS Applied Materials & Direct Ink Writing Of Liquid Crystals. ACS Applied Materials & Direct Ink Writing Of Liquid Crystals. ACS Applied Materials & Direct Ink Writing Of Liquid Crystals. ACS Applied Materials & Direct Ink Writing Of Liquid Crystals. ACS Applied Materials & Direct Ink Writing Of Liquid Crystals. ACS Applied Materials & Direct Ink Writing Of Liquid Crystals. ACS Applied Materials & Direct Ink Writing Of Liquid Crystals. ACS Applied Materials & Direct Ink Writing Of Liquid Crystals. ACS Applied Materials & Direct Ink Writing Of Liquid Crystals. ACS Applied Materials & Direct Ink Writing Of Liquid Crystals. ACS Applied Materials & Direct Ink Writing Of Liquid Crystals. ACS Applied Materials & Direct Ink Writing Of Liquid Crystals. ACS Applied Materials & Direct Ink Writing Of Liquid Crystals. ACS Applied Materials & Direct Ink Writing Of Liquid Crystals. ACS Applied Materials & Direct Ink Writing Of Liquid Crystals. ACS Applied Materials & Direct Ink Writing Of Liquid Crystals. ACS Applied Materials & Direct Ink Writing Of Liquid Crystals & Direct Ink Writing Of Liquid Crysta	4.0	19
40	Stable and scalable smart window based on polymer stabilized liquid crystals. Journal of Applied Polymer Science, 2020, 137, 48917.	1.3	52
41	Epitaxial growth of light-responsive azobenzene molecular crystal actuators on oriented polyethylene films. Journal of Materials Chemistry C, 2020, 8, 694-699.	2.7	10
42	Liquid Crystal Networks on Thermoplastics: Reprogrammable Photoâ€Responsive Actuators. Angewandte Chemie - International Edition, 2020, 59, 4532-4536.	7.2	84
43	Fluorene benzothiadiazole co-oligomer based aqueous self-assembled nanoparticles. RSC Advances, 2020, 10, 444-450.	1.7	6
44	A Patterned Mechanochromic Photonic Polymer for Reversible Image Reveal. Advanced Materials Interfaces, 2020, 7, 1901878.	1.9	50
45	Tunable Photonic Materials via Monitoring Stepâ€Growth Polymerization Kinetics by Structural Colors. Advanced Functional Materials, 2020, 30, 1906833.	7.8	40
46	Nanohybrid Materials with Tunable Birefringence via Cation Exchange in Polymer Films. Advanced Functional Materials, 2020, 30, 1907456.	7.8	9
47	Dual Light and Temperature Responsive Micrometerâ€Sized Structural Color Actuators. Small, 2020, 16, e1905219.	5.2	47
48	An artificial aquatic polyp that wirelessly attracts, grasps, and releases objects. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17571-17577.	3.3	32
49	A bifacial colour-tunable system <i>via</i> combination of a cholesteric liquid crystal network and hydrogel. Journal of Materials Chemistry C, 2020, 8, 10191-10196.	2.7	11
50	Lightâ€Driven Continual Oscillatory Rocking of a Polymer Film. ChemistryOpen, 2020, 9, 1149-1152.	0.9	26
51	Stimuli-Responsive Shape Changing Commodity Polymer Composites and Bilayers. ACS Applied Materials & Samp; Interfaces, 2020, 12, 38829-38844.	4.0	39
52	Bioinspired light-driven soft robots based on liquid crystal polymers. Chemical Society Reviews, 2020, 49, 6568-6578.	18.7	172
53	Direct Ink Writing of a Lightâ€Responsive Underwater Liquid Crystal Actuator with Atypical Temperatureâ€Dependent Shape Changes. Advanced Functional Materials, 2020, 30, 2005560.	7.8	51
54	Programmable liquid crystal elastomer microactuators prepared <i>via</i> thiol–ene dispersion polymerization. Soft Matter, 2020, 16, 4908-4911.	1.2	17

#	Article	IF	CITATIONS
55	Epoxide and oxetane based liquid crystals for advanced functional materials. Soft Matter, 2020, 16, 5106-5119.	1.2	14
56	The Role of Polyethylene Wax on the Thermal Conductivity of Transparent Ultradrawn Polyethylene Films. Macromolecules, 2020, 53, 5599-5603.	2.2	15
57	Light Tracking and Light Guiding Fiber Arrays by Adjusting the Location of Photoresponsive Azobenzene in Liquid Crystal Networks. Advanced Optical Materials, 2020, 8, 2000732.	3.6	35
58	Flexible Nanoporous Liquid Crystal Networks as Matrixes for Förster Resonance Energy Transfer (FRET). ACS Applied Nano Materials, 2020, 3, 3904-3909.	2.4	11
59	An Optical Steam Sterilization Sensor Based On a Dual-Responsive Supramolecular Cross-Linked Photonic Polymer. ACS Applied Materials & Interfaces, 2020, 12, 16896-16902.	4.0	27
60	Polymer Stabilized Cholesteric Liquid Crystal Siloxane for Temperature-Responsive Photonic Coatings. International Journal of Molecular Sciences, 2020, 21, 1803.	1.8	30
61	Brushâ€Paintable, Temperature and Light Responsive Triple Shapeâ€Memory Photonic Coatings Based on Micrometerâ€Sized Cholesteric Liquid Crystal Polymer Particles. Advanced Optical Materials, 2020, 8, 2000054.	3.6	55
62	Advanced Optical Materials for Sunlight Control in Greenhouses. Advanced Optical Materials, 2020, 8, 2000738.	3.6	43
63	Direct Laser Writing of Four-Dimensional Structural Color Microactuators Using a Photonic Photoresist. ACS Nano, 2020, 14, 9832-9839.	7.3	89
64	Ultra-High Actuation Stress Polymer Actuators as Light-Driven Artificial Muscles. ACS Applied Materials & Driven Artificial Muscles. ACS Applied	4.0	36
65	Unravelling humidity-gated, temperature responsive bilayer actuators. Soft Matter, 2020, 16, 2753-2759.	1.2	17
66	A Soft Transporter Robot Fueled by Light. Advanced Science, 2020, 7, 1902842.	5.6	112
67	Liquid Crystal Networks on Thermoplastics: Reprogrammable Photoâ€Responsive Actuators. Angewandte Chemie, 2020, 132, 4562-4566.	1.6	11
68	Structural Color Actuators: Dual Light and Temperature Responsive Micrometerâ€Sized Structural Color Actuators (Small 1/2020). Small, 2020, 16, 2070005.	5.2	1
69	Discrete Ï€â€Stacks from Selfâ€Assembled Perylenediimide Analogues. Angewandte Chemie - International Edition, 2019, 58, 15273-15277.	7.2	41
70	Transparent, Highâ€Thermalâ€Conductivity Ultradrawn Polyethylene/Graphene Nanocomposite Films. Advanced Materials, 2019, 31, e1904348.	11.1	69
71	Discrete Ï€â€Stacks from Selfâ€Assembled Perylenediimide Analogues. Angewandte Chemie, 2019, 131, 15417-15421.	1.6	13
72	Temperature-Responsive, Multicolor-Changing Photonic Polymers. ACS Applied Materials & Eamp; Interfaces, 2019, 11, 28172-28179.	4.0	70

#	Article	IF	Citations
73	Photonic Shape Memory Chiral Nematic Polymer Coatings with Changing Surface Topography and Color. Advanced Optical Materials, 2019, 7, 1900592.	3.6	26
74	Unravelling the photothermal and photomechanical contributions to actuation of azobenzene-doped liquid crystal polymers in air and water. Journal of Materials Chemistry C, 2019, 7, 13502-13509.	2.7	78
75	Paintable Encapsulated Body-Temperature-Responsive Photonic Reflectors with Arbitrary Shapes. ACS Applied Polymer Materials, 2019, 1, 3407-3412.	2.0	24
76	Monodisperse Liquid Crystal Network Particles Synthesized via Precipitation Polymerization. Macromolecules, 2019, 52, 8339-8345.	2.2	22
77	Lightâ€Responsive Smart Soft Matter Technologies. Advanced Optical Materials, 2019, 7, 1901160.	3.6	45
78	A self-sustained soft actuator able to rock and roll. Chemical Communications, 2019, 55, 11029-11032.	2.2	28
79	Temperatureâ€Responsive Polymer Wave Plates as Tunable Polarization Converters. Advanced Optical Materials, 2019, 7, 1901103.	3.6	9
80	Butterfly proboscis-inspired tight rolling tapered soft actuators. Chemical Communications, 2019, 55, 1726-1729.	2.2	34
81	An Untethered Magnetic―and Lightâ€Responsive Rotary Gripper: Shedding Light on Photoresponsive Liquid Crystal Actuators. Advanced Optical Materials, 2019, 7, 1801643.	3.6	76
82	Rewritable Optical Patterns in Light-Responsive Ultrahigh Molecular Weight Polyethylene. ACS Applied Polymer Materials, 2019, 1, 392-396.	2.0	16
83	Air-Curable, High-Resolution Patternable Oxetane-Based Liquid Crystalline Photonic Films via Flexographic Printing. ACS Applied Materials & Interfaces, 2019, 11, 7423-7430.	4.0	44
84	3D Helix Engineering in Chiral Photonic Materials. Advanced Materials, 2019, 31, e1903120.	11.1	64
85	Paintable temperature-responsive cholesteric liquid crystal reflectors encapsulated on a single flexible polymer substrate. Journal of Materials Chemistry C, 2019, 7, 7395-7398.	2.7	34
86	Patterned Full-Color Reflective Coatings Based on Photonic Cholesteric Liquid-Crystalline Particles. ACS Applied Materials & ACS ACS Applied Materials & ACS ACS APPLIED & ACS ACS APPLIED & ACS ACS APPLIED & ACS ACS ACS APPLIED & ACS	4.0	42
87	Optical Patterns on Drawn Polyethylene by Direct Laser Writing. Macromolecular Rapid Communications, 2019, 40, 1800811.	2.0	11
88	Tetrazineâ€" <i>trans</i> -Cyclooctene Chemistry Applied to Fabricate Self-Assembled Fluorescent and Radioactive Nanoparticles for <i>in Vivo</i> Dual Mode Imaging. Bioconjugate Chemistry, 2019, 30, 547-551.	1.8	9
89	On Untethered, Dual Magneto―and Photoresponsive Liquid Crystal Bilayer Actuators Showing Bending and Rotating Motion. Advanced Optical Materials, 2019, 7, 1801604.	3.6	34
90	Humidity-gated, temperature-responsive photonic infrared reflective broadband coatings. Journal of Materials Chemistry A, 2019, 7, 6113-6119.	5.2	80

#	Article	IF	Citations
91	An Artificial Nocturnal Flower via Humidityâ€Gated Photoactuation in Liquid Crystal Networks. Advanced Materials, 2019, 31, e1805985.	11.1	154
92	Environmentally responsive photonic polymers. Chemical Communications, 2019, 55, 2880-2891.	2.2	74
93	Sub-5 nm structured films by hydrogen bonded siloxane liquid crystals and block copolymers. Journal of Materials Chemistry C, 2018, 6, 3042-3046.	2.7	10
94	Proton conductive cationic nanoporous polymers based on smectic liquid crystal hydrogen-bonded heterodimers. Journal of Materials Chemistry C, 2018, 6, 5018-5024.	2.7	17
95	Macromol. Rapid Commun. 1/2018. Macromolecular Rapid Communications, 2018, 39, 1870004.	2.0	O
96	A full color photonic polymer, rewritable with a liquid crystal ink. Chemical Communications, 2018, 54, 4425-4428.	2.2	50
97	Synthesis and Selfâ€Assembly of Bayâ€Substituted Perylene Diimide Geminiâ€Type Surfactants as Offâ€On Fluorescent Probes for Lipid Bilayers. Chemistry - A European Journal, 2018, 24, 7734-7741.	1.7	24
98	Lightâ€Driven Electrohydrodynamic Instabilities in Liquid Crystals. Advanced Functional Materials, 2018, 28, 1707436.	7.8	35
99	Light-responsive polymers for microfluidic applications. Lab on A Chip, 2018, 18, 699-709.	3.1	64
100	Liquid crystal elastomer coatings with programmed response of surface profile. Nature Communications, 2018, 9, 456.	5.8	114
101	Photoresponsive Spongeâ€Like Coating for Onâ€Demand Liquid Release. Advanced Functional Materials, 2018, 28, 1705942.	7.8	50
102	Multistate Luminescent Solar Concentrator "Smart―Windows. Advanced Energy Materials, 2018, 8, 1702922.	10.2	83
103	Proton-conductive materials formed by coumarin photocrosslinked ionic liquid crystal dendrimers. Journal of Materials Chemistry C, 2018, 6, 1000-1007.	2.7	50
104	Full Color Camouflage in a Printable Photonic Blue-Colored Polymer. ACS Applied Materials & Samp; Interfaces, 2018, 10, 4168-4172.	4.0	97
105	Cell thickness dependence of electrically tunable infrared reflectors based on polymer stabilized cholesteric liquid crystals. Science China Materials, 2018, 61, 745-751.	3.5	11
106	Size-Selective Adsorption in Nanoporous Polymers from Coumarin Photo-Cross-Linked Columnar Liquid Crystals. Macromolecules, 2018, 51, 2349-2358.	2.2	41
107	Photoresponsive Passive Micromixers Based on Spiropyran Sizeâ€Tunable Hydrogels. Macromolecular Rapid Communications, 2018, 39, 1700086.	2.0	28
108	Directed Selfâ€Assembly of Liquidâ€Crystalline Molecular Building Blocks for Subâ€5 nm Nanopatterning. Advanced Materials, 2018, 30, 1703713.	11.1	64

#	Article	IF	CITATIONS
109	Easily Processable and Programmable Responsive Semiâ€Interpenetrating Liquid Crystalline Polymer Network Coatings with Changing Reflectivities and Surface Topographies. Advanced Functional Materials, 2018, 28, 1704756.	7.8	63
110	Temperatureâ€Responsive Luminescent Solar Concentrators: Tuning Energy Transfer in a Liquid Crystalline Matrix. Angewandte Chemie - International Edition, 2018, 57, 1030-1033.	7.2	64
111	Re―and Preconfigurable Multistable Visible Light Responsive Surface Topographies. Small, 2018, 14, e1803274.	5.2	28
112	Programmable helical twisting in oriented humidity-responsive bilayer films generated by spray-coating of a chiral nematic liquid crystal. Journal of Materials Chemistry A, 2018, 6, 17724-17729.	5.2	58
113	An easily coatable temperature responsive cholesteric liquid crystal oligomer for making structural colour patterns. Journal of Materials Chemistry C, 2018, 6, 7184-7187.	2.7	72
114	Nanoporous Polymers Based on Liquid Crystals. Materials, 2018, 11, 104.	1.3	30
115	Complianceâ€Mediated Topographic Oscillation of Polarized Light Triggered Liquid Crystal Coating. Advanced Materials Interfaces, 2018, 5, 1800810.	1.9	10
116	Well-Adhering, Easily Producible Photonic Reflective Coatings for Plastic Substrates. ACS Applied Materials & Substrates. ACS Applied Mate	4.0	25
117	Hydrogenâ€Bonded Siloxane Liquid Crystals for Hybrid Nanomaterials. Helvetica Chimica Acta, 2018, 101, e1800130.	1.0	8
118	Micrometerâ€Scale Porous Buckling Shell Actuators Based on Liquid Crystal Networks. Advanced Functional Materials, 2018, 28, 1801209.	7.8	39
119	Tuning microfluidic flow by pulsed light oscillating spiropyran-based polymer hydrogel valves. Sensors and Actuators B: Chemical, 2017, 245, 81-86.	4.0	33
120	Bimodal Ultrahigh Molecular Weight Polyethylenes Produced from Supported Catalysts: The Challenge of Using a Combined Catalyst System. Macromolecular Chemistry and Physics, 2017, 218, 1600490.	1.1	10
121	Hydrophobicity determines the fate of self-assembled fluorescent nanoparticles in cells. Chemical Communications, 2017, 53, 1626-1629.	2.2	7
122	Relationship between Sideâ€Chain Polarity and the Selfâ€Assembly Characteristics of Perylene Diimide Derivatives in Aqueous Solution. ChemistryOpen, 2017, 6, 266-272.	0.9	14
123	Smectic hybrid oligo(dimethylsiloxane) liquid crystal for nanopatterning. Proceedings of SPIE, 2017, , .	0.8	1
124	Infrared Regulating Smart Window Based on Organic Materials. Advanced Energy Materials, 2017, 7, 1602209.	10.2	286
125	Reactive oligo(dimethylsiloxane) mesogens and their nanostructured thin films. Soft Matter, 2017, 13, 4357-4362.	1.2	4
126	Lightâ€Responsive Hierarchically Structured Liquid Crystal Polymer Networks for Harnessing Cell Adhesion and Migration. Advanced Materials, 2017, 29, 1606407.	11.1	90

#	Article	IF	Citations
127	Patterned oscillating topographical changes in photoresponsive polymer coatings. Soft Matter, 2017, 13, 4321-4327.	1.2	27
128	A Rewritable, Reprogrammable, Dual Lightâ€Responsive Polymer Actuator. Angewandte Chemie, 2017, 129, 13621-13624.	1.6	19
129	Photonic Shape Memory Polymer with Stable Multiple Colors. ACS Applied Materials & Amp; Interfaces, 2017, 9, 32161-32167.	4.0	52
130	A Rewritable, Reprogrammable, Dual Lightâ€Responsive Polymer Actuator. Angewandte Chemie - International Edition, 2017, 56, 13436-13439.	7.2	127
131	Anisotropic Dye Adsorption and Anhydrous Proton Conductivity in Smectic Liquid Crystal Networks: The Role of Cross-Link Density, Order, and Orientation. ACS Applied Materials & Samp; Interfaces, 2017, 9, 35218-35225.	4.0	38
132	3D Orientational Control in Selfâ€Assembled Thin Films with Subâ€5 nm Features by Light. Small, 2017, 13, 1701043.	5.2	24
133	Biointerfaces: Lightâ€Responsive Hierarchically Structured Liquid Crystal Polymer Networks for Harnessing Cell Adhesion and Migration (Adv. Mater. 27/2017). Advanced Materials, 2017, 29, .	11.1	O
134	On the Dimensional Control of 2 D Hybrid Nanomaterials. Chemistry - A European Journal, 2017, 23, 12534-12541.	1.7	4
135	Fabrication and Postmodification of Nanoporous Liquid Crystalline Networks via Dynamic Covalent Chemistry. Chemistry of Materials, 2017, 29, 6601-6605.	3.2	22
136	Easily Processable Temperature-Responsive Infrared-Reflective Polymer Coatings. ACS Omega, 2017, 2, 3475-3482.	1.6	30
137	Light-Triggered Formation of Surface Topographies in Azo Polymers. Crystals, 2017, 7, 231.	1.0	32
138	Cholesteric Liquid Crystalline Polymer Networks as Optical Sensors. , 2017, , 83-102.		3
139	Thin Films: 3D Orientational Control in Selfâ€Assembled Thin Films with Subâ€5 nm Features by Light (Small 33/2017). Small, 2017, 13, .	5.2	0
140	Ligand exchange as a tool to improve quantum dot miscibility in polymer composite layers used as luminescent down-shifting layers for photovoltaic applications. Journal of Materials Chemistry C, 2016, 4, 5747-5754.	2.7	26
141	Electrically tunable infrared reflector with adjustable bandwidth broadening up to 1100 nm. Journal of Materials Chemistry A, 2016, 4, 6064-6069.	5.2	54
142	Subâ€5 nm Patterning by Directed Selfâ€Assembly of Oligo(Dimethylsiloxane) Liquid Crystal Thin Films. Advanced Materials, 2016, 28, 10068-10072.	11.1	64
143	A chaotic self-oscillating sunlight-driven polymer actuator. Nature Communications, 2016, 7, 11975.	5.8	329
144	An Optical Sensor Based on a Photonic Polymer Film to Detect Calcium in Serum. Advanced Functional Materials, 2016, 26, 1154-1160.	7.8	115

#	Article	IF	Citations
145	Nanoporous polymer particles made by suspension polymerization: spontaneous symmetry breaking in hydrogen bonded smectic liquid crystalline droplets and high adsorption characteristics. Polymer Chemistry, 2016, 7, 4712-4716.	1.9	23
146	Dual electrically and thermally responsive broadband reflectors based on polymer network stabilized chiral nematic liquid crystals: the role of crosslink density. Chemical Communications, 2016, 52, 10109-10112.	2.2	28
147	Photoresponsive Fiber Array: Toward Mimicking the Collective Motion of Cilia for Transport Applications. Advanced Functional Materials, 2016, 26, 5322-5327.	7.8	116
148	Dual light and temperature responsive cotton fabric functionalized with a surface-grafted spiropyran–NIPAAm-hydrogel. Journal of Materials Chemistry A, 2016, 4, 8676-8681.	5.2	80
149	Regulating the modulus of a chiral liquid crystal polymer network by light. Soft Matter, 2016, 12, 3196-3201.	1.2	68
150	Smectic liquid crystal polymers as a template for ultrathin CaCO ₃ nanolayers. RSC Advances, 2016, 6, 13953-13956.	1.7	6
151	Hot pen and laser writable photonic polymer films. Proceedings of SPIE, 2016, , .	0.8	8
152	Self-Assembled Fluorescent Nanoparticles from π-Conjugated Small Molecules: En Route to Biological Applications. Macromolecular Rapid Communications, 2015, 36, 1306-1321.	2.0	46
153	Rapid Energy Transfer Enabling Control of Emission Polarization in Perylene Bisimide Donor–Acceptor Triads. Journal of Physical Chemistry Letters, 2015, 6, 1170-1176.	2.1	22
154	Photoresponsive Nanoporous Smectic Liquid Crystalline Polymer Networks: Changing the Number of Binding Sites and Pore Dimensions in Polymer Adsorbents by Light. Macromolecules, 2015, 48, 4073-4080.	2.2	29
155	Onâ€Demand Wrinkling Patterns in Thin Metal Films Generated from Selfâ€Assembling Liquid Crystals. Advanced Functional Materials, 2015, 25, 1360-1365.	7.8	29
156	Photopatterning: Onâ€Demand Wrinkling Patterns in Thin Metal Films Generated from Selfâ€Assembling Liquid Crystals (Adv. Funct. Mater. 9/2015). Advanced Functional Materials, 2015, 25, 1472-1472.	7.8	0
157	Molecular Design of Light-Responsive Hydrogels, For in Situ Generation of Fast and Reversible Valves for Microfluidic Applications. Chemistry of Materials, 2015, 27, 5925-5931.	3.2	141
158	Enhanced Amplified Spontaneous Emission in Perovskites Using a Flexible Cholesteric Liquid Crystal Reflector. Nano Letters, 2015, 15, 4935-4941.	4.5	117
159	Selective Absorption of Hydrophobic Cations in Nanostructured Porous Materials from Crosslinked Hydrogenâ∈Bonded Columnar Liquid Crystals. Advanced Materials Interfaces, 2015, 2, 1500022.	1.9	18
160	Stimuliâ€Responsive Materials Based on Interpenetrating Polymer Liquid Crystal Hydrogels. Advanced Functional Materials, 2015, 25, 3314-3320.	7.8	132
161	Water-responsive dual-coloured photonic polymer coatings based on cholesteric liquid crystals. RSC Advances, 2015, 5, 94650-94653.	1.7	39
162	Electrically switchable polymer stabilised broadband infrared reflectors and their potential as smart windows for energy saving in buildings. Scientific Reports, 2015, 5, 11773.	1.6	102

#	Article	IF	Citations
163	Capture and Concentration of Light to a Spot in Plastic Lightguides by Circular Luminophore Arrangements. Advanced Optical Materials, 2015, 3, 257-262.	3 . 6	6
164	Combining Positive and Negative Dichroic Fluorophores for Advanced Light Management in Luminescent Solar Concentrators. Advanced Optical Materials, 2014, 2, 687-693.	3.6	34
165	Selective Adsorption: Responsive Nanoporous Smectic Liquid Crystal Polymer Networks as Efficient and Selective Adsorbents (Adv. Funct. Mater. 32/2014). Advanced Functional Materials, 2014, 24, 5022-5022.	7.8	1
166	Responsive Nanoporous Smectic Liquid Crystal Polymer Networks as Efficient and Selective Adsorbents. Advanced Functional Materials, 2014, 24, 5045-5051.	7.8	102
167	Optical and topographic changes in water-responsive patterned cholesteric liquid crystalline polymer coatings. Proceedings of SPIE, 2014, , .	0.8	3
168	An Optical Sensor for Volatile Amines Based on an Inkjetâ€Printed, Hydrogenâ€Bonded, Cholesteric Liquid Crystalline Film. Advanced Optical Materials, 2014, 2, 459-464.	3.6	60
169	Stimuli-responsive photonic polymer coatings. Chemical Communications, 2014, 50, 15839-15848.	2.2	119
170	Programmed morphing of liquid crystal networks. Polymer, 2014, 55, 5885-5896.	1.8	119
171	Application of broadband infrared reflector based on cholesteric liquid crystal polymer bilayer film to windows and its impact on reducing the energy consumption in buildings. Journal of Materials Chemistry A, 2014, 2, 14622.	5. 2	77
172	Photoswitchable Ratchet Surface Topographies Based on Self-Protonating Spiropyran–NIPAAM Hydrogels. ACS Applied Materials & Interfaces, 2014, 6, 7268-7274.	4.0	64
173	Chiral-nematic liquid crystals as one dimensional photonic materials in optical sensors. Journal of Materials Chemistry C, 2014, 2, 6695-6705.	2.7	192
174	Humidity-Responsive Liquid Crystalline Polymer Actuators with an Asymmetry in the Molecular Trigger That Bend, Fold, and Curl. Journal of the American Chemical Society, 2014, 136, 10585-10588.	6.6	280
175	Dichroic Perylene Bisimide Triad Displaying Energy Transfer in Switchable Luminescent Solar Concentrators. Chemistry of Materials, 2014, 26, 3876-3878.	3.2	42
176	Accordionâ€like Actuators of Multiple 3D Patterned Liquid Crystal Polymer Films. Advanced Functional Materials, 2014, 24, 1251-1258.	7.8	206
177	Patterned Silver Nanoparticles embedded in a Nanoporous Smectic Liquid Crystalline Polymer Network. Journal of the American Chemical Society, 2013, 135, 10922-10925.	6.6	38
178	Fluorescent Ï€â€Conjugated Polymer Dots versus Selfâ€Assembled Smallâ€Molecule Nanoparticles: What's the Difference?. Chemistry - A European Journal, 2013, 19, 10928-10934.	1.7	22
179	Superior alignment of multi-chromophoric perylenebisimides in nematic liquid crystals and their application in switchable optical waveguides. Journal of Materials Chemistry A, 2013, 1, 229-232.	5.2	44
180	Humidity-Responsive Bilayer Actuators Based on a Liquid-Crystalline Polymer Network. ACS Applied Materials & Distribution (2013), 5, 4945-4950.	4.0	127

#	Article	IF	CITATIONS
181	A Printable Optical Timeâ€√emperature Integrator Based on Shape Memory in a Chiral Nematic Polymer Network. Advanced Functional Materials, 2013, 23, 2723-2727.	7.8	76
182	Selfâ€Assembled Fluorescent Organic Nanoparticles for Liveâ€Cell Imaging. Chemistry - A European Journal, 2013, 19, 16646-16650.	1.7	38
183	Side Chains Control Dynamics and Self-Sorting in Fluorescent Organic Nanoparticles. ACS Nano, 2013, 7, 408-416.	7.3	58
184	Photoswitchable Hydrogel Surface Topographies by Polymerisationâ€Induced Diffusion. Chemistry - A European Journal, 2013, 19, 10922-10927.	1.7	44
185	Engineering of Complex Order and the Macroscopic Deformation of Liquid Crystal Polymer Networks. Angewandte Chemie - International Edition, 2012, 51, 12469-12472.	7.2	297
186	Two-dimensional pH-responsive printable smectic hydrogels. Chemical Communications, 2012, 48, 4555.	2.2	32
187	Morphology-Dependent Energy Transfer Dynamics in Fluorene-Based Amphiphile Nanoparticles. ACS Nano, 2012, 6, 4777-4787.	7.3	40
188	Functional Organic Materials Based on Polymerized Liquidâ€Crystal Monomers: Supramolecular Hydrogenâ€Bonded Systems. Angewandte Chemie - International Edition, 2012, 51, 7102-7109.	7.2	219
189	Printable Optical Sensors Based on H-Bonded Supramolecular Cholesteric Liquid Crystal Networks. Journal of the American Chemical Society, 2012, 134, 7608-7611.	6.6	162
190	A multivalent hexapod having 24 stereogenic centers: chirality and conformational dynamics in homochiral and heterochiral systems. CrystEngComm, 2011, 13, 5584.	1.3	11
191	Pre- and Postfunctionalized Self-Assembled π-Conjugated Fluorescent Organic Nanoparticles for Dual Targeting. Journal of the American Chemical Society, 2011, 133, 17063-17071.	6.6	105
192	Nanoporous membranes based on liquid crystalline polymers. Liquid Crystals, 2011, 38, 1627-1639.	0.9	54
193	Fluorescent Nanoparticles Based on Selfâ€Assembled <i>Ï€</i> â€Conjugated Systems. Advanced Materials, 2010, 22, 2985-2997.	11.1	281
194	Impact of nuclear lattice relaxation on the excitation energy transfer along a chain of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>ï€</mml:mi></mml:math> -conjugated molecules. Physical Review B, 2010, 81, .	1.1	11
195	ssDNA templated assembly of oligonucleotides and bivalent naphthalene guests. Soft Matter, 2010, 6, 1494.	1.2	17
196	Using magnetic birefringence to determine the molecular arrangement of supramolecular nanostructures. Science and Technology of Advanced Materials, 2009, 10, 014601.	2.8	15
197	Multicolour Selfâ€Assembled Fluorene Coâ€Oligomers: From Molecules to the Solid State via Whiteâ€Lightâ€Emitting Organogels. Chemistry - A European Journal, 2009, 15, 9737-9746.	1.7	99
198	Fluoreneâ€based materials and their supramolecular properties. Journal of Polymer Science Part A, 2009, 47, 4215-4233.	2.5	122

#	Article	IF	CITATIONS
199	Photodimerization Processes in Selfâ€Assembled Chiral Oligo(<i>p</i> à€phenylenevinylene) Bolaamphiphiles. Chemistry - an Asian Journal, 2009, 4, 910-917.	1.7	23
200	Supramolecular Polymerization. Chemical Reviews, 2009, 109, 5687-5754.	23.0	2,086
201	The Self-Assembly Properties of a Benzene-1,3,5-tricarboxamide Derivative. Journal of Chemical Education, 2009, 86, 230.	1.1	12
202	Multicolour self-assembled particles of fluorene-based bolaamphiphiles. Chemical Communications, 2009, , 1697.	2.2	76
203	Self-assembly of amphiphilic gold nanoparticles decorated with a mixed shell of oligo(p-phenylene) Tj ETQq $1\ 1\ 0$.	784314 rg 6.7	gBT_{3}Overlock
204	Liquid crystalline hydrogen bonded oligo(p-phenylenevinylene)s. Journal of Materials Chemistry, 2008, 18, 2968.	6.7	23
205	Tuning the self-assembly of a ditopic crown ether functionalized oligo(p-phenylenevinylene). Journal of Materials Chemistry, 2007, 17, 2654.	6.7	16
206	Metal Coordination and Aggregation Properties of Chiral Polythiophenes and Polythienylethynylenes. Macromolecular Rapid Communications, 2007, 28, 1809-1815.	2.0	30
207	Synthesis and properties of \hat{l}_{\pm} ,	6.7	17
208	Supramolecular Chemistry at the Liquid/Solid Interface. Materials Research Society Symposia Proceedings, 2005, 901, 1.	0.1	0
209	About Supramolecular Assemblies of π-Conjugated Systems. Chemical Reviews, 2005, 105, 1491-1546.	23.0	2,917
210	Supramolecular electronics; nanowires from self-assembled π-conjugated systems. Chemical Communications, 2005, , 3245.	2.2	735
211	Magnetic Field Alignment of Liquid Crystalline Pentathiophene. Molecular Crystals and Liquid Crystals, 2004, 410, 23-28.	0.4	3
212	Surface-controlled self-assembly of chiral sexithiophenes. Journal of Materials Chemistry, 2004, 14, 1959-1963.	6.7	56
213	Synthesis of n-Type Perylene Bisimide Derivatives and Their Orthogonal Self-Assembly with p-Type Oligo(p-phenylene vinylene)s. Journal of the American Chemical Society, 2004, 126, 10021-10027.	6.6	237
214	Charge Separation and Recombination in Photoexcited Oligo(p-phenylene vinylene):Â Perylene Bisimide Arrays Close to the Marcus Inverted Region. Journal of Physical Chemistry A, 2004, 108, 6933-6937.	1.1	64
215	Synthesis and self-assembly of a chiral alternating sexithiophene-undeca(ethyleneoxy) block copolymer. Journal of Polymer Science Part A, 2003, 41, 1737-1743.	2.5	14
216	Improving color purity and stability in a blue emitting polyfluorene by monomer purification. Journal of Materials Chemistry, 2003, 13, 2861.	6.7	143

#	Article	IF	CITATIONS
217	Liquid Crystalline Oligo(p-phenylene vinylene)-Terminated Poly(propylene imine) Dendrimers. Synthesis and Characterization. Macromolecules, 2003, 36, 565-572.	2.2	25
218	Direct observation of chiral oligo(p-phenylenevinylene)s with scanning tunneling microscopy. Journal of Materials Chemistry, 2003, 13, 2164-2167.	6.7	37
219	Fast exciton diffusion in chiral stacks of conjugatedp-phenylene vinylene oligomers. Physical Review B, 2003, 68, .	1.1	73
220	One and Two-dimensional Semiconducting Nanostructures Self-assembly of Conjugated Oligomers. Materials Research Society Symposia Proceedings, 2003, 775, 871.	0.1	0
221	Electronic Structure and Optical Properties of Mixed Phenylene Vinylene/Phenylene Ethynylene Conjugated Oligomers. Chemistry of Materials, 2002, 14, 1362-1368.	3.2	38
222	Supramolecular Organization of α,αâ€~-Disubstituted Sexithiophenes. Journal of the American Chemical Society, 2002, 124, 1269-1275.	6.6	211
223	Singlet-energy transfer in quadruple hydrogen-bonded oligo(p-phenylenevinylene)–fullerene dyads. Journal of Materials Chemistry, 2002, 12, 2054-2060.	6.7	63
224	Photoinduced Electron Transfer in Hydrogen-Bonded Oligo(p-phenylene vinylene)â^'Perylene Bisimide Chiral Assemblies. Journal of the American Chemical Society, 2002, 124, 10252-10253.	6.6	292
225	Formation and manipulation of supramolecular structures of oligo(p-phenylenevinylene) terminated poly(propylene imine) dendrimers. Chemical Communications, 2002, , 1264-1265.	2.2	10
226	Side-Chain-Functionalized Polyacetylenes, 1. Liquid Crystalline and Stereomutational Properties. Macromolecular Rapid Communications, 2002, 23, 265-270.	2.0	67
227	Side-Chain-Functionalized Polyacetylenes, 2. Photovoltaic Properties. Macromolecular Rapid Communications, 2002, 23, 271-275.	2.0	10
228	Synthesis of ?-conjugated oligomer that can form metallo polymers. Journal of Polymer Science Part A, 2002, 40, 4020-4023.	2.5	44
229	Hierarchical Order in Supramolecular Assemblies of Hydrogen-Bonded Oligo(p-phenylene vinylene)s. Journal of the American Chemical Society, 2001, 123, 409-416.	6.6	339
230	Supramolecular organisation of oligo(p-phenylenevinylene) at the air–water interface and in water. Perkin Transactions II RSC, 2001, , 1280-1286.	1.1	26
231	Microscopy and optical manipulation of dendrimer-built vesicles. Pure and Applied Chemistry, 2001, 73, 435-441.	0.9	9
232	Synthesis of multi-porphyrin arrays and study of their self-assembly behaviour at the air-water interface. Journal of Physical Organic Chemistry, 2001, 14, 501-512.	0.9	13
233	Amorphous calcium carbonate stabilised by poly(propylene imine) dendrimers. Chemical Communications, 2000, , 1937-1938.	2.2	108
234	Mass spectrometric evidence for aggregation of a substituted sexithiophene. Chemical Communications, 2000, , 383-384.	2.2	10

#	Article	IF	CITATIONS
235	Quadruple hydrogen bonded oligo(p-phenylene vinylene) dimers. Chemical Communications, 2000, , 1969-1970.	2.2	45
236	Energy Transfer in Supramolecular Assemblies of Oligo(p-phenylene vinylene)s Terminated Poly(propylene imine) Dendrimers. Journal of the American Chemical Society, 2000, 122, 4489-4495.	6.6	154
237	Chiral Aggregates of $\hat{l}\pm, i$ %-Disubstituted Sexithiophenes in Protic and Aqueous Media. Journal of the American Chemical Society, 2000, 122, 1820-1821.	6.6	87
238	Amphiphilic Dendrimers as Building Blocks in Supramolecular Assemblies. Journal of the American Chemical Society, 1998, 120, 8199-8208.	6.6	323
239	Wellâ€Defined Metallodendrimers by Siteâ€Specific Complexation. Chemische Berichte, 1997, 130, 725-728.	0.2	61
240	Flowerâ \in like colloidal particles through precipitation polymerization of redox responsive liquid crystals. Angewandte Chemie, $0, , .$	1.6	0