List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4064217/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	About Supramolecular Assemblies of π-Conjugated Systems. Chemical Reviews, 2005, 105, 1491-1546.	47.7	2,917
2	Supramolecular Polymerization. Chemical Reviews, 2009, 109, 5687-5754.	47.7	2,086
3	Supramolecular electronics; nanowires from self-assembled π-conjugated systems. Chemical Communications, 2005, , 3245.	4.1	735
4	Hierarchical Order in Supramolecular Assemblies of Hydrogen-Bonded Oligo(p-phenylene vinylene)s. Journal of the American Chemical Society, 2001, 123, 409-416.	13.7	339
5	A chaotic self-oscillating sunlight-driven polymer actuator. Nature Communications, 2016, 7, 11975.	12.8	329
6	Amphiphilic Dendrimers as Building Blocks in Supramolecular Assemblies. Journal of the American Chemical Society, 1998, 120, 8199-8208.	13.7	323
7	Engineering of Complex Order and the Macroscopic Deformation of Liquid Crystal Polymer Networks. Angewandte Chemie - International Edition, 2012, 51, 12469-12472.	13.8	297
8	Photoinduced Electron Transfer in Hydrogen-Bonded Oligo(p-phenylene vinylene)â^'Perylene Bisimide Chiral Assemblies. Journal of the American Chemical Society, 2002, 124, 10252-10253.	13.7	292
9	Infrared Regulating Smart Window Based on Organic Materials. Advanced Energy Materials, 2017, 7, 1602209.	19.5	286
10	Fluorescent Nanoparticles Based on Selfâ€Assembled <i>Ï€</i> â€Conjugated Systems. Advanced Materials, 2010, 22, 2985-2997.	21.0	281
11	Humidity-Responsive Liquid Crystalline Polymer Actuators with an Asymmetry in the Molecular Trigger That Bend, Fold, and Curl. Journal of the American Chemical Society, 2014, 136, 10585-10588.	13.7	280
12	Synthesis of n-Type Perylene Bisimide Derivatives and Their Orthogonal Self-Assembly with p-Type Oligo(p-phenylene vinylene)s. Journal of the American Chemical Society, 2004, 126, 10021-10027.	13.7	237
13	Functional Organic Materials Based on Polymerized Liquidâ€Crystal Monomers: Supramolecular Hydrogenâ€Bonded Systems. Angewandte Chemie - International Edition, 2012, 51, 7102-7109.	13.8	219
14	Supramolecular Organization of α,αâ€ [~] -Disubstituted Sexithiophenes. Journal of the American Chemical Society, 2002, 124, 1269-1275.	13.7	211
15	Accordionâ€like Actuators of Multiple 3D Patterned Liquid Crystal Polymer Films. Advanced Functional Materials, 2014, 24, 1251-1258.	14.9	206
16	Chiral-nematic liquid crystals as one dimensional photonic materials in optical sensors. Journal of Materials Chemistry C, 2014, 2, 6695-6705.	5.5	192
17	Bioinspired light-driven soft robots based on liquid crystal polymers. Chemical Society Reviews, 2020, 49, 6568-6578.	38.1	172
18	Printable Optical Sensors Based on H-Bonded Supramolecular Cholesteric Liquid Crystal Networks. Journal of the American Chemical Society, 2012, 134, 7608-7611.	13.7	162

#	Article	IF	CITATIONS
19	Hydrogen-Bonded Supramolecular Liquid Crystal Polymers: Smart Materials with Stimuli-Responsive, Self-Healing, and Recyclable Properties. Chemical Reviews, 2022, 122, 4946-4975.	47.7	161
20	Energy Transfer in Supramolecular Assemblies of Oligo(p-phenylene vinylene)s Terminated Poly(propylene imine) Dendrimers. Journal of the American Chemical Society, 2000, 122, 4489-4495.	13.7	154
21	An Artificial Nocturnal Flower via Humidityâ€Gated Photoactuation in Liquid Crystal Networks. Advanced Materials, 2019, 31, e1805985.	21.0	154
22	Improving color purity and stability in a blue emitting polyfluorene by monomer purification. Journal of Materials Chemistry, 2003, 13, 2861.	6.7	143
23	Molecular Design of Light-Responsive Hydrogels, For in Situ Generation of Fast and Reversible Valves for Microfluidic Applications. Chemistry of Materials, 2015, 27, 5925-5931.	6.7	141
24	Stimuliâ€Responsive Materials Based on Interpenetrating Polymer Liquid Crystal Hydrogels. Advanced Functional Materials, 2015, 25, 3314-3320.	14.9	132
25	Humidity-Responsive Bilayer Actuators Based on a Liquid-Crystalline Polymer Network. ACS Applied Materials & Interfaces, 2013, 5, 4945-4950.	8.0	127
26	A Rewritable, Reprogrammable, Dual Lightâ€Responsive Polymer Actuator. Angewandte Chemie - International Edition, 2017, 56, 13436-13439.	13.8	127
27	Fluoreneâ€based materials and their supramolecular properties. Journal of Polymer Science Part A, 2009, 47, 4215-4233.	2.3	122
28	Stimuli-responsive photonic polymer coatings. Chemical Communications, 2014, 50, 15839-15848.	4.1	119
29	Programmed morphing of liquid crystal networks. Polymer, 2014, 55, 5885-5896.	3.8	119
30	Enhanced Amplified Spontaneous Emission in Perovskites Using a Flexible Cholesteric Liquid Crystal Reflector. Nano Letters, 2015, 15, 4935-4941.	9.1	117
31	Photoresponsive Fiber Array: Toward Mimicking the Collective Motion of Cilia for Transport Applications. Advanced Functional Materials, 2016, 26, 5322-5327.	14.9	116
32	An Optical Sensor Based on a Photonic Polymer Film to Detect Calcium in Serum. Advanced Functional Materials, 2016, 26, 1154-1160.	14.9	115
33	Liquid crystal elastomer coatings with programmed response of surface profile. Nature Communications, 2018, 9, 456.	12.8	114
34	A Soft Transporter Robot Fueled by Light. Advanced Science, 2020, 7, 1902842.	11.2	112
35	Amorphous calcium carbonate stabilised by poly(propylene imine) dendrimers. Chemical Communications, 2000, , 1937-1938.	4.1	108
36	Pre- and Postfunctionalized Self-Assembled π-Conjugated Fluorescent Organic Nanoparticles for Dual Targeting. Journal of the American Chemical Society, 2011, 133, 17063-17071.	13.7	105

#	Article	IF	CITATIONS
37	Responsive Nanoporous Smectic Liquid Crystal Polymer Networks as Efficient and Selective Adsorbents. Advanced Functional Materials, 2014, 24, 5045-5051.	14.9	102
38	Electrically switchable polymer stabilised broadband infrared reflectors and their potential as smart windows for energy saving in buildings. Scientific Reports, 2015, 5, 11773.	3.3	102
39	Multicolour Selfâ€Assembled Fluorene Coâ€Oligomers: From Molecules to the Solid State via Whiteâ€Lightâ€Emitting Organogels. Chemistry - A European Journal, 2009, 15, 9737-9746.	3.3	99
40	Full Color Camouflage in a Printable Photonic Blue-Colored Polymer. ACS Applied Materials & Interfaces, 2018, 10, 4168-4172.	8.0	97
41	Lightâ€Responsive Hierarchically Structured Liquid Crystal Polymer Networks for Harnessing Cell Adhesion and Migration. Advanced Materials, 2017, 29, 1606407.	21.0	90
42	Direct Laser Writing of Four-Dimensional Structural Color Microactuators Using a Photonic Photoresist. ACS Nano, 2020, 14, 9832-9839.	14.6	89
43	Chiral Aggregates of α,ω-Disubstituted Sexithiophenes in Protic and Aqueous Media. Journal of the American Chemical Society, 2000, 122, 1820-1821.	13.7	87
44	Liquid Crystal Networks on Thermoplastics: Reprogrammable Photoâ€Responsive Actuators. Angewandte Chemie - International Edition, 2020, 59, 4532-4536.	13.8	84
45	Multistate Luminescent Solar Concentrator "Smart―Windows. Advanced Energy Materials, 2018, 8, 1702922.	19.5	83
46	Dual light and temperature responsive cotton fabric functionalized with a surface-grafted spiropyran–NIPAAm-hydrogel. Journal of Materials Chemistry A, 2016, 4, 8676-8681.	10.3	80
47	Humidity-gated, temperature-responsive photonic infrared reflective broadband coatings. Journal of Materials Chemistry A, 2019, 7, 6113-6119.	10.3	80
48	Unravelling the photothermal and photomechanical contributions to actuation of azobenzene-doped liquid crystal polymers in air and water. Journal of Materials Chemistry C, 2019, 7, 13502-13509.	5.5	78
49	Application of broadband infrared reflector based on cholesteric liquid crystal polymer bilayer film to windows and its impact on reducing the energy consumption in buildings. Journal of Materials Chemistry A, 2014, 2, 14622.	10.3	77
50	Multicolour self-assembled particles of fluorene-based bolaamphiphiles. Chemical Communications, 2009, , 1697.	4.1	76
51	A Printable Optical Timeâ€Temperature Integrator Based on Shape Memory in a Chiral Nematic Polymer Network. Advanced Functional Materials, 2013, 23, 2723-2727.	14.9	76
52	An Untethered Magnetic―and Lightâ€Responsive Rotary Gripper: Shedding Light on Photoresponsive Liquid Crystal Actuators. Advanced Optical Materials, 2019, 7, 1801643.	7.3	76
53	4D Printing of Liquid Crystals: What's Right for Me?. Advanced Materials, 2022, 34, e2104390.	21.0	75
54	Environmentally responsive photonic polymers. Chemical Communications, 2019, 55, 2880-2891.	4.1	74

#	Article	IF	CITATIONS
55	Fast exciton diffusion in chiral stacks of conjugatedp-phenylene vinylene oligomers. Physical Review B, 2003, 68, .	3.2	73
56	An easily coatable temperature responsive cholesteric liquid crystal oligomer for making structural colour patterns. Journal of Materials Chemistry C, 2018, 6, 7184-7187.	5.5	72
57	Temperature-Responsive, Multicolor-Changing Photonic Polymers. ACS Applied Materials & Interfaces, 2019, 11, 28172-28179.	8.0	70
58	Transparent, Highâ€Thermalâ€Conductivity Ultradrawn Polyethylene/Graphene Nanocomposite Films. Advanced Materials, 2019, 31, e1904348.	21.0	69
59	Regulating the modulus of a chiral liquid crystal polymer network by light. Soft Matter, 2016, 12, 3196-3201.	2.7	68
60	Side-Chain-Functionalized Polyacetylenes, 1. Liquid Crystalline and Stereomutational Properties. Macromolecular Rapid Communications, 2002, 23, 265-270.	3.9	67
61	Charge Separation and Recombination in Photoexcited Oligo(p-phenylene vinylene):Â Perylene Bisimide Arrays Close to the Marcus Inverted Region. Journal of Physical Chemistry A, 2004, 108, 6933-6937.	2.5	64
62	Photoswitchable Ratchet Surface Topographies Based on Self-Protonating Spiropyran–NIPAAM Hydrogels. ACS Applied Materials & Interfaces, 2014, 6, 7268-7274.	8.0	64
63	Subâ€5 nm Patterning by Directed Selfâ€Assembly of Oligo(Dimethylsiloxane) Liquid Crystal Thin Films. Advanced Materials, 2016, 28, 10068-10072.	21.0	64
64	Light-responsive polymers for microfluidic applications. Lab on A Chip, 2018, 18, 699-709.	6.0	64
65	Directed Selfâ€Assembly of Liquidâ€Crystalline Molecular Building Blocks for Subâ€5 nm Nanopatterning. Advanced Materials, 2018, 30, 1703713.	21.0	64
66	Temperatureâ€Responsive Luminescent Solar Concentrators: Tuning Energy Transfer in a Liquid Crystalline Matrix. Angewandte Chemie - International Edition, 2018, 57, 1030-1033.	13.8	64
67	3D Helix Engineering in Chiral Photonic Materials. Advanced Materials, 2019, 31, e1903120.	21.0	64
68	Singlet-energy transfer in quadruple hydrogen-bonded oligo(p-phenylenevinylene)–fullerene dyads. Journal of Materials Chemistry, 2002, 12, 2054-2060.	6.7	63
69	Easily Processable and Programmable Responsive Semiâ€Interpenetrating Liquid Crystalline Polymer Network Coatings with Changing Reflectivities and Surface Topographies. Advanced Functional Materials, 2018, 28, 1704756.	14.9	63
70	Wellâ€Đefined Metallodendrimers by Site‧pecific Complexation. Chemische Berichte, 1997, 130, 725-728.	0.2	61
71	An Optical Sensor for Volatile Amines Based on an Inkjetâ€Printed, Hydrogenâ€Bonded, Cholesteric Liquid Crystalline Film. Advanced Optical Materials, 2014, 2, 459-464.	7.3	60
72	Side Chains Control Dynamics and Self-Sorting in Fluorescent Organic Nanoparticles. ACS Nano, 2013, 7, 408-416.	14.6	58

5

#	Article	IF	CITATIONS
73	Programmable helical twisting in oriented humidity-responsive bilayer films generated by spray-coating of a chiral nematic liquid crystal. Journal of Materials Chemistry A, 2018, 6, 17724-17729.	10.3	58
74	Surface-controlled self-assembly of chiral sexithiophenes. Journal of Materials Chemistry, 2004, 14, 1959-1963.	6.7	56
75	Brushâ€Paintable, Temperature and Light Responsive Triple Shapeâ€Memory Photonic Coatings Based on Micrometer‣ized Cholesteric Liquid Crystal Polymer Particles. Advanced Optical Materials, 2020, 8, 2000054.	7.3	55
76	Temperatureâ€Responsive Photonic Devices Based on Cholesteric Liquid Crystals. Advanced Photonics Research, 2021, 2, 2100016.	3.6	55
77	Nanoporous membranes based on liquid crystalline polymers. Liquid Crystals, 2011, 38, 1627-1639.	2.2	54
78	Electrically tunable infrared reflector with adjustable bandwidth broadening up to 1100 nm. Journal of Materials Chemistry A, 2016, 4, 6064-6069.	10.3	54
79	Photonic Shape Memory Polymer with Stable Multiple Colors. ACS Applied Materials & Interfaces, 2017, 9, 32161-32167.	8.0	52
80	Stable and scalable smart window based on polymer stabilized liquid crystals. Journal of Applied Polymer Science, 2020, 137, 48917.	2.6	52
81	Direct Ink Writing of a Lightâ€Responsive Underwater Liquid Crystal Actuator with Atypical Temperatureâ€Dependent Shape Changes. Advanced Functional Materials, 2020, 30, 2005560.	14.9	51
82	A full color photonic polymer, rewritable with a liquid crystal ink. Chemical Communications, 2018, 54, 4425-4428.	4.1	50
83	Photoresponsive Spongeâ€Like Coating for Onâ€Demand Liquid Release. Advanced Functional Materials, 2018, 28, 1705942.	14.9	50
84	Proton-conductive materials formed by coumarin photocrosslinked ionic liquid crystal dendrimers. Journal of Materials Chemistry C, 2018, 6, 1000-1007.	5.5	50
85	A Patterned Mechanochromic Photonic Polymer for Reversible Image Reveal. Advanced Materials Interfaces, 2020, 7, 1901878.	3.7	50
86	Dual Light and Temperature Responsive Micrometerâ€ S ized Structural Color Actuators. Small, 2020, 16, e1905219.	10.0	47
87	Self-Assembled Fluorescent Nanoparticles from π-Conjugated Small Molecules: En Route to Biological Applications. Macromolecular Rapid Communications, 2015, 36, 1306-1321.	3.9	46
88	Quadruple hydrogen bonded oligo(p-phenylene vinylene) dimers. Chemical Communications, 2000, , 1969-1970.	4.1	45
89	Lightâ€Responsive Smart Soft Matter Technologies. Advanced Optical Materials, 2019, 7, 1901160.	7.3	45
90	4D Chiral Photonic Actuators with Switchable Hyperâ€Reflectivity. Advanced Functional Materials, 2021, 31, 2007887.	14.9	45

6

#	Article	IF	CITATIONS
91	Synthesis of ?-conjugated oligomer that can form metallo polymers. Journal of Polymer Science Part A, 2002, 40, 4020-4023.	2.3	44
92	Superior alignment of multi-chromophoric perylenebisimides in nematic liquid crystals and their application in switchable optical waveguides. Journal of Materials Chemistry A, 2013, 1, 229-232.	10.3	44
93	Photoswitchable Hydrogel Surface Topographies by Polymerisationâ€Induced Diffusion. Chemistry - A European Journal, 2013, 19, 10922-10927.	3.3	44
94	Air-Curable, High-Resolution Patternable Oxetane-Based Liquid Crystalline Photonic Films via Flexographic Printing. ACS Applied Materials & Interfaces, 2019, 11, 7423-7430.	8.0	44
95	Advanced Optical Materials for Sunlight Control in Greenhouses. Advanced Optical Materials, 2020, 8, 2000738.	7.3	43
96	Anisotropic Iridescence and Polarization Patterns in a Direct Ink Written Chiral Photonic Polymer. Advanced Materials, 2021, 33, e2103309.	21.0	43
97	Direct Ink Writing of 4D Structural Colors. Advanced Functional Materials, 2022, 32, .	14.9	43
98	Dichroic Perylene Bisimide Triad Displaying Energy Transfer in Switchable Luminescent Solar Concentrators. Chemistry of Materials, 2014, 26, 3876-3878.	6.7	42
99	Patterned Full-Color Reflective Coatings Based on Photonic Cholesteric Liquid-Crystalline Particles. ACS Applied Materials & Interfaces, 2019, 11, 14376-14382.	8.0	42
100	Size-Selective Adsorption in Nanoporous Polymers from Coumarin Photo-Cross-Linked Columnar Liquid Crystals. Macromolecules, 2018, 51, 2349-2358.	4.8	41
101	Discrete Ï€â€Stacks from Selfâ€Assembled Perylenediimide Analogues. Angewandte Chemie - International Edition, 2019, 58, 15273-15277.	13.8	41
102	Enhanced Thermal Conductivity in Oriented Polyvinyl Alcohol/Graphene Oxide Composites. ACS Applied Materials & Interfaces, 2021, 13, 28864-28869.	8.0	41
103	Morphology-Dependent Energy Transfer Dynamics in Fluorene-Based Amphiphile Nanoparticles. ACS Nano, 2012, 6, 4777-4787.	14.6	40
104	Tunable Photonic Materials via Monitoring Stepâ€Growth Polymerization Kinetics by Structural Colors. Advanced Functional Materials, 2020, 30, 1906833.	14.9	40
105	Water-responsive dual-coloured photonic polymer coatings based on cholesteric liquid crystals. RSC Advances, 2015, 5, 94650-94653.	3.6	39
106	Micrometerâ€Scale Porous Buckling Shell Actuators Based on Liquid Crystal Networks. Advanced Functional Materials, 2018, 28, 1801209.	14.9	39
107	Stimuli-Responsive Shape Changing Commodity Polymer Composites and Bilayers. ACS Applied Materials & Interfaces, 2020, 12, 38829-38844.	8.0	39
108	Electronic Structure and Optical Properties of Mixed Phenylene Vinylene/Phenylene Ethynylene Conjugated Oligomers. Chemistry of Materials, 2002, 14, 1362-1368.	6.7	38

#	Article	IF	CITATIONS
109	Patterned Silver Nanoparticles embedded in a Nanoporous Smectic Liquid Crystalline Polymer Network. Journal of the American Chemical Society, 2013, 135, 10922-10925.	13.7	38
110	Selfâ€Assembled Fluorescent Organic Nanoparticles for Liveâ€Cell Imaging. Chemistry - A European Journal, 2013, 19, 16646-16650.	3.3	38
111	Anisotropic Dye Adsorption and Anhydrous Proton Conductivity in Smectic Liquid Crystal Networks: The Role of Cross-Link Density, Order, and Orientation. ACS Applied Materials & Interfaces, 2017, 9, 35218-35225.	8.0	38
112	Direct observation of chiral oligo(p-phenylenevinylene)s with scanning tunneling microscopy. Journal of Materials Chemistry, 2003, 13, 2164-2167.	6.7	37
113	Ultra-High Actuation Stress Polymer Actuators as Light-Driven Artificial Muscles. ACS Applied Materials & Interfaces, 2020, 12, 33210-33218.	8.0	36
114	Lightâ€Driven Electrohydrodynamic Instabilities in Liquid Crystals. Advanced Functional Materials, 2018, 28, 1707436.	14.9	35
115	Light Tracking and Light Guiding Fiber Arrays by Adjusting the Location of Photoresponsive Azobenzene in Liquid Crystal Networks. Advanced Optical Materials, 2020, 8, 2000732.	7.3	35
116	Combining Positive and Negative Dichroic Fluorophores for Advanced Light Management in Luminescent Solar Concentrators. Advanced Optical Materials, 2014, 2, 687-693.	7.3	34
117	Butterfly proboscis-inspired tight rolling tapered soft actuators. Chemical Communications, 2019, 55, 1726-1729.	4.1	34
118	Paintable temperature-responsive cholesteric liquid crystal reflectors encapsulated on a single flexible polymer substrate. Journal of Materials Chemistry C, 2019, 7, 7395-7398.	5.5	34
119	On Untethered, Dual Magneto―and Photoresponsive Liquid Crystal Bilayer Actuators Showing Bending and Rotating Motion. Advanced Optical Materials, 2019, 7, 1801604.	7.3	34
120	Reversible Thermochromic Photonic Coatings with a Protective Topcoat. ACS Applied Materials & Interfaces, 2021, 13, 3153-3160.	8.0	34
121	Tuning microfluidic flow by pulsed light oscillating spiropyran-based polymer hydrogel valves. Sensors and Actuators B: Chemical, 2017, 245, 81-86.	7.8	33
122	Two-dimensional pH-responsive printable smectic hydrogels. Chemical Communications, 2012, 48, 4555.	4.1	32
123	Light-Triggered Formation of Surface Topographies in Azo Polymers. Crystals, 2017, 7, 231.	2.2	32
124	An artificial aquatic polyp that wirelessly attracts, grasps, and releases objects. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17571-17577.	7.1	32
125	Wavelengthâ€Selective Photopolymerization of Hybrid Acrylateâ€Oxetane Liquid Crystals. Angewandte Chemie - International Edition, 2021, 60, 10935-10941.	13.8	32
126	Temperatureâ€Responsive 4D Liquid Crystal Microactuators Fabricated by Direct Laser Writing by Twoâ€Photon Polymerization. Small Structures, 2022, 3, 2100158.	12.0	32

#	Article	IF	CITATIONS
127	Metal Coordination and Aggregation Properties of Chiral Polythiophenes and Polythienylethynylenes. Macromolecular Rapid Communications, 2007, 28, 1809-1815.	3.9	30
128	Easily Processable Temperature-Responsive Infrared-Reflective Polymer Coatings. ACS Omega, 2017, 2, 3475-3482.	3.5	30
129	Nanoporous Polymers Based on Liquid Crystals. Materials, 2018, 11, 104.	2.9	30
130	Polymer Stabilized Cholesteric Liquid Crystal Siloxane for Temperature-Responsive Photonic Coatings. International Journal of Molecular Sciences, 2020, 21, 1803.	4.1	30
131	Photoresponsive Nanoporous Smectic Liquid Crystalline Polymer Networks: Changing the Number of Binding Sites and Pore Dimensions in Polymer Adsorbents by Light. Macromolecules, 2015, 48, 4073-4080.	4.8	29
132	Onâ€Demand Wrinkling Patterns in Thin Metal Films Generated from Selfâ€Assembling Liquid Crystals. Advanced Functional Materials, 2015, 25, 1360-1365.	14.9	29
133	Dual electrically and thermally responsive broadband reflectors based on polymer network stabilized chiral nematic liquid crystals: the role of crosslink density. Chemical Communications, 2016, 52, 10109-10112.	4.1	28
134	Photoresponsive Passive Micromixers Based on Spiropyran Sizeâ€īunable Hydrogels. Macromolecular Rapid Communications, 2018, 39, 1700086.	3.9	28
135	Re―and Preconfigurable Multistable Visible Light Responsive Surface Topographies. Small, 2018, 14, e1803274.	10.0	28
136	A self-sustained soft actuator able to rock and roll. Chemical Communications, 2019, 55, 11029-11032.	4.1	28
137	Self-assembling liquid crystals as building blocks to design nanoporous membranes suitable for molecular separations. Journal of Membrane Science, 2021, 620, 118849.	8.2	28
138	Patterned oscillating topographical changes in photoresponsive polymer coatings. Soft Matter, 2017, 13, 4321-4327.	2.7	27
139	An Optical Steam Sterilization Sensor Based On a Dual-Responsive Supramolecular Cross-Linked Photonic Polymer. ACS Applied Materials & Interfaces, 2020, 12, 16896-16902.	8.0	27
140	Supramolecular organisation of oligo(p-phenylenevinylene) at the air–water interface and in water. Perkin Transactions II RSC, 2001, , 1280-1286.	1.1	26
141	Ligand exchange as a tool to improve quantum dot miscibility in polymer composite layers used as luminescent down-shifting layers for photovoltaic applications. Journal of Materials Chemistry C, 2016, 4, 5747-5754.	5.5	26
142	Photonic Shape Memory Chiral Nematic Polymer Coatings with Changing Surface Topography and Color. Advanced Optical Materials, 2019, 7, 1900592.	7.3	26
143	Lightâ€Ðriven Continual Oscillatory Rocking of a Polymer Film. ChemistryOpen, 2020, 9, 1149-1152.	1.9	26
144	High Thermal Conductivity in Anisotropic Aligned Polymeric Materials. ACS Applied Polymer Materials, 2021, 3, 578-587.	4.4	26

#	Article	IF	CITATIONS
145	Liquid Crystalline Oligo(p-phenylene vinylene)-Terminated Poly(propylene imine) Dendrimers. Synthesis and Characterization. Macromolecules, 2003, 36, 565-572.	4.8	25
146	Well-Adhering, Easily Producible Photonic Reflective Coatings for Plastic Substrates. ACS Applied Materials & Interfaces, 2018, 10, 30008-30013.	8.0	25
147	Oneâ€Pot Synthesis of Meltâ€Processable Supramolecular Soft Actuators. Angewandte Chemie - International Edition, 2022, 61, .	13.8	25
148	3D Orientational Control in Selfâ€Assembled Thin Films with Subâ€5 nm Features by Light. Small, 2017, 13, 1701043.	10.0	24
149	Synthesis and Selfâ€Assembly of Bay‣ubstituted Perylene Diimide Geminiâ€Type Surfactants as Offâ€On Fluorescent Probes for Lipid Bilayers. Chemistry - A European Journal, 2018, 24, 7734-7741.	3.3	24
150	Paintable Encapsulated Body-Temperature-Responsive Photonic Reflectors with Arbitrary Shapes. ACS Applied Polymer Materials, 2019, 1, 3407-3412.	4.4	24
151	Self-assembly of amphiphilic gold nanoparticles decorated with a mixed shell of oligo(p-phenylene) Tj ETQq1 1 0.7	784314 rg 6.7	gBT /Overlock
152	Liquid crystalline hydrogen bonded oligo(p-phenylenevinylene)s. Journal of Materials Chemistry, 2008, 18, 2968.	6.7	23
153	Photodimerization Processes in Selfâ€Assembled Chiral Oligo(<i>p</i> â€phenylenevinylene) Bolaamphiphiles. Chemistry - an Asian Journal, 2009, 4, 910-917.	3.3	23
154	Nanoporous polymer particles made by suspension polymerization: spontaneous symmetry breaking in hydrogen bonded smectic liquid crystalline droplets and high adsorption characteristics. Polymer Chemistry, 2016, 7, 4712-4716.	3.9	23
155	Fluorescent ï€â€Conjugated Polymer Dots versus Selfâ€Assembled Smallâ€Molecule Nanoparticles: What's the Difference?. Chemistry - A European Journal, 2013, 19, 10928-10934.	3.3	22
156	Rapid Energy Transfer Enabling Control of Emission Polarization in Perylene Bisimide Donor–Acceptor Triads. Journal of Physical Chemistry Letters, 2015, 6, 1170-1176.	4.6	22
157	Fabrication and Postmodification of Nanoporous Liquid Crystalline Networks via Dynamic Covalent Chemistry. Chemistry of Materials, 2017, 29, 6601-6605.	6.7	22
158	Monodisperse Liquid Crystal Network Particles Synthesized via Precipitation Polymerization. Macromolecules, 2019, 52, 8339-8345.	4.8	22
159	Optical Indicators based on Structural Colored Polymers. Advanced Science, 2022, 9, e2200399.	11.2	22
160	A Rewritable, Reprogrammable, Dual Lightâ€Responsive Polymer Actuator. Angewandte Chemie, 2017, 129, 13621-13624.	2.0	19
161	Patterned Actuators via Direct Ink Writing of Liquid Crystals. ACS Applied Materials & Interfaces, 2021, 13, 59381-59391.	8.0	19
162	Selective Absorption of Hydrophobic Cations in Nanostructured Porous Materials from Crosslinked Hydrogenâ€Bonded Columnar Liquid Crystals. Advanced Materials Interfaces, 2015, 2, 1500022.	3.7	18

#	Article	IF	CITATIONS
163	Triple-Shape-Memory Soft Actuators from an Interpenetrating Network of Hybrid Liquid Crystals. Macromolecules, 2021, 54, 5410-5416.	4.8	18
164	Synthesis and properties of α,ω-phenyl-capped bithiophene derivatives. Journal of Materials Chemistry, 2006, 16, 4335-4342.	6.7	17
165	ssDNA templated assembly of oligonucleotides and bivalent naphthalene guests. Soft Matter, 2010, 6, 1494.	2.7	17
166	Proton conductive cationic nanoporous polymers based on smectic liquid crystal hydrogen-bonded heterodimers. Journal of Materials Chemistry C, 2018, 6, 5018-5024.	5.5	17
167	Programmable liquid crystal elastomer microactuators prepared <i>via</i> thiol–ene dispersion polymerization. Soft Matter, 2020, 16, 4908-4911.	2.7	17
168	Unravelling humidity-gated, temperature responsive bilayer actuators. Soft Matter, 2020, 16, 2753-2759.	2.7	17
169	Tuning the self-assembly of a ditopic crown ether functionalized oligo(p-phenylenevinylene). Journal of Materials Chemistry, 2007, 17, 2654.	6.7	16
170	Rewritable Optical Patterns in Light-Responsive Ultrahigh Molecular Weight Polyethylene. ACS Applied Polymer Materials, 2019, 1, 392-396.	4.4	16
171	3D Anisotropic Polyethylene as Lightâ€Responsive Grippers and Surfing Divers. Advanced Functional Materials, 2021, 31, 2100465.	14.9	16
172	Smectic Liquid Crystalline Polymer Membranes with Aligned Nanopores in an Anisotropic Scaffold. ACS Applied Materials & Interfaces, 2021, 13, 7592-7599.	8.0	16
173	A pH-Responsive Liquid Crystal Hydrogel Actuator with Calcium-Induced Reprogrammable Shape Fixing. ACS Applied Polymer Materials, 2022, 4, 1298-1304.	4.4	16
174	Pigmented Structural Color Actuators Fueled by Near-Infrared Light. ACS Applied Materials & Interfaces, 2022, 14, 20093-20100.	8.0	16
175	Using magnetic birefringence to determine the molecular arrangement of supramolecular nanostructures. Science and Technology of Advanced Materials, 2009, 10, 014601.	6.1	15
176	The Role of Polyethylene Wax on the Thermal Conductivity of Transparent Ultradrawn Polyethylene Films. Macromolecules, 2020, 53, 5599-5603.	4.8	15
177	Synthesis and self-assembly of a chiral alternating sexithiophene-undeca(ethyleneoxy) block copolymer. Journal of Polymer Science Part A, 2003, 41, 1737-1743.	2.3	14
178	Relationship between Sideâ€Chain Polarity and the Selfâ€Assembly Characteristics of Perylene Diimide Derivatives in Aqueous Solution. ChemistryOpen, 2017, 6, 266-272.	1.9	14
179	Epoxide and oxetane based liquid crystals for advanced functional materials. Soft Matter, 2020, 16, 5106-5119.	2.7	14
180	'Smart' lightâ€reflective windows based on temperature responsive twisted nematic liquid crystal polymers. Journal of Polymer Science, 2021, 59, 1278-1284.	3.8	14

#	Article	IF	CITATIONS
181	Synthesis of multi-porphyrin arrays and study of their self-assembly behaviour at the air-water interface. Journal of Physical Organic Chemistry, 2001, 14, 501-512.	1.9	13
182	Discrete Ï€â€Stacks from Selfâ€Assembled Perylenediimide Analogues. Angewandte Chemie, 2019, 131, 15417-15421.	2.0	13
183	Electrothermal Color Tuning of Cholesteric Liquid Crystals Using Interdigitated Electrode Patterns. Advanced Electronic Materials, 2021, 7, 2000958.	5.1	13
184	Direct Ink Writing of Recyclable Supramolecular Soft Actuators. ACS Macro Letters, 2022, 11, 935-940.	4.8	13
185	The Self-Assembly Properties of a Benzene-1,3,5-tricarboxamide Derivative. Journal of Chemical Education, 2009, 86, 230.	2.3	12
186	On the Order and Orientation in Liquid Crystalline Polymer Membranes for Gas Separation. Chemistry of Materials, 2021, 33, 8323-8333.	6.7	12
187	Impact of nuclear lattice relaxation on the excitation energy transfer along a chain of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" > <mml:mi> i€ </mml:mi> -conjugated molecules. Physical Review B, 2010, 81, .</mml:math 	3.2	11
188	A multivalent hexapod having 24 stereogenic centers: chirality and conformational dynamics in homochiral and heterochiral systems. CrystEngComm, 2011, 13, 5584.	2.6	11
189	Cell thickness dependence of electrically tunable infrared reflectors based on polymer stabilized cholesteric liquid crystals. Science China Materials, 2018, 61, 745-751.	6.3	11
190	Optical Patterns on Drawn Polyethylene by Direct Laser Writing. Macromolecular Rapid Communications, 2019, 40, 1800811.	3.9	11
191	A bifacial colour-tunable system <i>via</i> combination of a cholesteric liquid crystal network and hydrogel. Journal of Materials Chemistry C, 2020, 8, 10191-10196.	5.5	11
192	Flexible Nanoporous Liquid Crystal Networks as Matrixes for Förster Resonance Energy Transfer (FRET). ACS Applied Nano Materials, 2020, 3, 3904-3909.	5.0	11
193	Liquid Crystal Networks on Thermoplastics: Reprogrammable Photoâ€Responsive Actuators. Angewandte Chemie, 2020, 132, 4562-4566.	2.0	11
194	Liquid rystalline Polymer Particles Prepared by Classical Polymerization Techniques. Chemistry - A European Journal, 2021, 27, 14168-14178.	3.3	11
195	Mass spectrometric evidence for aggregation of a substituted sexithiophene. Chemical Communications, 2000, , 383-384.	4.1	10
196	Formation and manipulation of supramolecular structures of oligo(p-phenylenevinylene) terminated poly(propylene imine) dendrimers. Chemical Communications, 2002, , 1264-1265.	4.1	10
197	Side-Chain-Functionalized Polyacetylenes, 2. Photovoltaic Properties. Macromolecular Rapid Communications, 2002, 23, 271-275.	3.9	10
198	Bimodal Ultrahigh Molecular Weight Polyethylenes Produced from Supported Catalysts: The Challenge of Using a Combined Catalyst System. Macromolecular Chemistry and Physics, 2017, 218, 1600490.	2.2	10

#	Article	IF	CITATIONS
199	Sub-5 nm structured films by hydrogen bonded siloxane liquid crystals and block copolymers. Journal of Materials Chemistry C, 2018, 6, 3042-3046.	5.5	10
200	Complianceâ€Mediated Topographic Oscillation of Polarized Light Triggered Liquid Crystal Coating. Advanced Materials Interfaces, 2018, 5, 1800810.	3.7	10
201	Epitaxial growth of light-responsive azobenzene molecular crystal actuators on oriented polyethylene films. Journal of Materials Chemistry C, 2020, 8, 694-699.	5.5	10
202	Flowerâ€Like Colloidal Particles through Precipitation Polymerization of Redoxâ€Responsive Liquid Crystals. Angewandte Chemie - International Edition, 2021, 60, 27026-27030.	13.8	10
203	Thermochromic Multicolored Photonic Coatings with Light Polarization- and Structural Color-Dependent Changes. ACS Applied Polymer Materials, 2022, 4, 537-545.	4.4	10
204	Microscopy and optical manipulation of dendrimer-built vesicles. Pure and Applied Chemistry, 2001, 73, 435-441.	1.9	9
205	Temperatureâ€Responsive Polymer Wave Plates as Tunable Polarization Converters. Advanced Optical Materials, 2019, 7, 1901103.	7.3	9
206	Tetrazine— <i>trans</i> -Cyclooctene Chemistry Applied to Fabricate Self-Assembled Fluorescent and Radioactive Nanoparticles for <i>in Vivo</i> Dual Mode Imaging. Bioconjugate Chemistry, 2019, 30, 547-551.	3.6	9
207	Nanohybrid Materials with Tunable Birefringence via Cation Exchange in Polymer Films. Advanced Functional Materials, 2020, 30, 1907456.	14.9	9
208	Water Barrier Properties of Resinâ€ s tabilized Waterborne Coatings for Paperboard. Macromolecular Materials and Engineering, 2022, 307, 2100829.	3.6	9
209	Hot pen and laser writable photonic polymer films. Proceedings of SPIE, 2016, , .	0.8	8
210	Hydrogenâ€Bonded Siloxane Liquid Crystals for Hybrid Nanomaterials. Helvetica Chimica Acta, 2018, 101, e1800130.	1.6	8
211	Hydrophobicity determines the fate of self-assembled fluorescent nanoparticles in cells. Chemical Communications, 2017, 53, 1626-1629.	4.1	7
212	Patterned and Collective Motion of Densely Packed Tapered Multiresponsive Liquid Crystal Cilia. Advanced Materials Technologies, 2022, 7, .	5.8	7
213	Capture and Concentration of Light to a Spot in Plastic Lightguides by Circular Luminophore Arrangements. Advanced Optical Materials, 2015, 3, 257-262.	7.3	6
214	Smectic liquid crystal polymers as a template for ultrathin CaCO ₃ nanolayers. RSC Advances, 2016, 6, 13953-13956.	3.6	6
215	Fluorene benzothiadiazole co-oligomer based aqueous self-assembled nanoparticles. RSC Advances, 2020, 10, 444-450.	3.6	6
216	Color–Tunable Triple–State "Smart―Window. Advanced Photonics Research, 2021, 2, 2100134.	3.6	6

#	Article	IF	CITATIONS
217	A foldable compact actuator based on an oxetane liquid crystal network. Journal of Applied Physics, 2021, 129, 075101.	2.5	5
218	Reactive oligo(dimethylsiloxane) mesogens and their nanostructured thin films. Soft Matter, 2017, 13, 4357-4362.	2.7	4
219	On the Dimensional Control of 2 D Hybrid Nanomaterials. Chemistry - A European Journal, 2017, 23, 12534-12541.	3.3	4
220	Monodisperse Liquid Crystalline Polymer Shells with Programmable Alignment and Shape Prepared by Seeded Dispersion Polymerization. Macromolecules, 2021, 54, 6052-6060.	4.8	4
221	Magnetic Field Alignment of Liquid Crystalline Pentathiophene. Molecular Crystals and Liquid Crystals, 2004, 410, 23-28.	0.9	3
222	Optical and topographic changes in water-responsive patterned cholesteric liquid crystalline polymer coatings. Proceedings of SPIE, 2014, , .	0.8	3
223	Wavelengthâ€5elective Photopolymerization of Hybrid Acrylateâ€Oxetane Liquid Crystals. Angewandte Chemie, 2021, 133, 11030-11036.	2.0	3
224	Cholesteric Liquid Crystalline Polymer Networks as Optical Sensors. , 2017, , 83-102.		3
225	Oneâ€Pot Synthesis of Meltâ€Processable Supramolecular Soft Actuators. Angewandte Chemie, 2022, 134, .	2.0	2
226	Switchable gas permeability of a polypropyleneâ€liquid crystalline composite film. Journal of Polymer Science, 2022, 60, 803-811.	3.8	2
227	Selective Adsorption: Responsive Nanoporous Smectic Liquid Crystal Polymer Networks as Efficient and Selective Adsorbents (Adv. Funct. Mater. 32/2014). Advanced Functional Materials, 2014, 24, 5022-5022.	14.9	1
228	Smectic hybrid oligo(dimethylsiloxane) liquid crystal for nanopatterning. Proceedings of SPIE, 2017, , .	0.8	1
229	Structural Color Actuators: Dual Light and Temperature Responsive Micrometerâ€6ized Structural Color Actuators (Small 1/2020). Small, 2020, 16, 2070005.	10.0	1
230	NIR–vis–UV Lightâ€Responsive High Stressâ€Generating Polymer Actuators with a Reduced Creep Rate. Macromolecular Rapid Communications, 2021, 42, 2100157.	3.9	1
231	Steering cholesteric liquid crystal elastomer properties by positional variation of chiral molecular building blocks. , 2022, , .		1
232	Image encoding with unconventional appearance through direct ink writing of a cholesteric liquid crystal oligomer ink. , 2022, , .		1
233	One and Two-dimensional Semiconducting Nanostructures Self-assembly of Conjugated Oligomers. Materials Research Society Symposia Proceedings, 2003, 775, 871.	0.1	0
234	Supramolecular Chemistry at the Liquid/Solid Interface. Materials Research Society Symposia Proceedings, 2005, 901, 1.	0.1	0

#	Article	IF	CITATIONS
235	Photopatterning: Onâ€Demand Wrinkling Patterns in Thin Metal Films Generated from Selfâ€Assembling Liquid Crystals (Adv. Funct. Mater. 9/2015). Advanced Functional Materials, 2015, 25, 1472-1472.	14.9	Ο
236	Biointerfaces: Lightâ€Responsive Hierarchically Structured Liquid Crystal Polymer Networks for Harnessing Cell Adhesion and Migration (Adv. Mater. 27/2017). Advanced Materials, 2017, 29, .	21.0	0
237	Macromol. Rapid Commun. 1/2018. Macromolecular Rapid Communications, 2018, 39, 1870004.	3.9	0
238	Anisotropic Iridescence and Polarization Patterns in a Direct Ink Written Chiral Photonic Polymer (Adv. Mater. 39/2021). Advanced Materials, 2021, 33, 2170310.	21.0	0
239	Flowerâ€ŀike colloidal particles through precipitation polymerization of redox responsive liquid crystals. Angewandte Chemie, 0, , .	2.0	0
240	Thin Films: 3D Orientational Control in Selfâ€Assembled Thin Films with Subâ€5 nm Features by Light (Small 33/2017). Small, 2017, 13, .	10.0	0