K. Ganesan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4063719/publications.pdf Version: 2024-02-01

K CANESAN

#	Article	IF	CITATIONS
1	Raman and Photoluminescence Spectroscopic Studies on Structural Disorder in Oxygen Deficient Gd ₂ Ti ₂ O _{7â€i} Single Crystals. Crystal Research and Technology, 2022, 57, .	1.3	3
2	Direct microscopic evidence of shear induced graphitization of ultrananocrystalline diamond films. Carbon Trends, 2021, 4, 100078.	3.0	1
3	Electronic and Vibrational Decoupling in Chemically Exfoliated Bilayer Thin Two-Dimensional V2O5. Journal of Physical Chemistry Letters, 2021, 12, 9821-9829.	4.6	3
4	Structural, optical and mechanical properties of Y2Ti2O7 single crystal. Scripta Materialia, 2020, 187, 227-231.	5.2	17
5	Structural, Raman and photoluminescence studies on nanocrystalline diamond films: Effects of ammonia in feedstock. Diamond and Related Materials, 2020, 106, 107872.	3.9	6
6	Electrical resistivity studies on Cd0.9Zn0.1Te single crystals grown by travelling heater method. AIP Conference Proceedings, 2020, , .	0.4	0
7	Structural and optical properties of beta irradiated YAlO3 single crystals. Optical Materials, 2020, 107, 110095.	3.6	3
8	Dynamic friction behavior of ultrananocrystalline diamond films: A depth-resolved chemical phase analysis. Ceramics International, 2019, 45, 23418-23422.	4.8	4
9	Role of microstructure and structural disorder on tribological properties of polycrystalline diamond films. Applied Surface Science, 2019, 469, 10-17.	6.1	27
10	Si and N - Vacancy color centers in discrete diamond nanoparticles: Raman and fluorescence spectroscopic studies. Diamond and Related Materials, 2019, 92, 150-158.	3.9	10
11	Tribological Properties of Ultrananocrystalline Diamond Films in Inert and Reactive Tribo-Atmospheres: XPS Depth-Resolved Chemical Analysis. Journal of Physical Chemistry C, 2018, 122, 8602-8613.	3.1	18
12	The role of substrate bias and nitrogen doping on the structural evolution and local elastic modulus of diamond-like carbon films. Journal Physics D: Applied Physics, 2017, 50, 175601.	2.8	9
13	Tribofilm formation in ultrananocrystalline diamond film. Diamond and Related Materials, 2017, 78, 12-23.	3.9	32
14	Interpretation of friction and wear in DLC film: role of surface chemistry and test environment. Journal Physics D: Applied Physics, 2016, 49, 445302.	2.8	26
15	A comparative study on defect estimation using XPS and Raman spectroscopy in few layer nanographitic structures. Physical Chemistry Chemical Physics, 2016, 18, 22160-22167.	2.8	136
16	MnO2-Vertical graphene nanosheets composite electrodes for energy storage devices. Materials Today: Proceedings, 2016, 3, 1686-1692.	1.8	24
17	Effect of Annealing on the Structural Properties of Vertical Graphene Nanosheets. Advanced Science, Engineering and Medicine, 2016, 8, 146-149.	0.3	9
18	Tribological behavior of hydrogenated DLC film: Chemical and physical transformations at nano-scale. Wear, 2015, 338-339, 105-113.	3.1	25

K. Ganesan

#	Article	IF	CITATIONS
19	Influence of substrate on nucleation and growth of vertical graphene nanosheets. Applied Surface Science, 2015, 349, 576-581.	6.1	67
20	Flipping growth orientation of nanographitic structures by plasma enhanced chemical vapor deposition. RSC Advances, 2015, 5, 91922-91931.	3.6	22
21	High energy ion irradiation induced surface patterning on a SiO 2 glass substrate. Nuclear Instruments & Methods in Physics Research B, 2014, 338, 89-94.	1.4	12
22	Evolution and defect analysis of vertical graphene nanosheets. Journal of Raman Spectroscopy, 2014, 45, 642-649.	2.5	109
23	Pre- and post-breakdown electrical studies in ultrathin Al2O3 films byÂconductive atomic force microscopy. Current Applied Physics, 2013, 13, 1865-1869.	2.4	8
24	Structural and piezoelectric properties of BiFeO[sub 3] thin films prepared by spin coating method. , 2013, , .		0
25	Conductive atomic force microscopy studies on dielectric breakdown behavior of ultrathin Al2O3 films. Applied Physics Letters, 2011, 98, .	3.3	13
26	The role of structural defects on the transport properties of a few-walled carbon nanotube networks. Applied Physics Letters, 2011, 98, .	3.3	16
27	Electron paramagnetic resonance studies on Mn doped GaSb. Journal of Applied Physics, 2011, 109, .	2.5	1
28	Nanometer-scale electronic and microstructural properties of grain boundaries in Cu(In,Ga)Se2. Thin Solid Films, 2011, 519, 7341-7346.	1.8	46
29	Optical absorption and photoluminescence studies on heavily doped (Ga,Mn)Sb crystals. Semiconductor Science and Technology, 2010, 25, 105003.	2.0	3
30	Temperature Dependent Transport Properties of a Few-wall Carbon Nanotubes Network. , 2010, , .		0
31	Magnetic and Magnetotransport Properties of Diluted Magnetic Semiconductor (Ga,Mn)Sb Crystals. Journal of Superconductivity and Novel Magnetism, 2008, 21, 391-397.	1.8	19
32	Growth, magnetotransport, and magnetic properties of ferromagnetic (In,Mn)Sb crystals. Journal of Applied Physics, 2008, 103, 043701.	2.5	18
33	Magneto-transport and optical properties of diluted magnetic semiconductor Ga <inf>1−x</inf> Mn <inf>x</inf> Sb. , 2007, , .		0
34	Influence of magnetic clusters on electrical and magnetic properties of In1â^'xMnxSb/GaAs dilute magnetic semiconductor grown by liquid phase epitaxy. Solid State Communications, 2007, 143, 272-275.	1.9	14
35	Crystal growth, structural and spectroscopic analysis of hypoxanthinium chloride monohydrate. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2007, 67, 750-755.	3.9	3
36	Proton NMR Study of Molecular Dynamics in Hydrazinium Perchlorate. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1990, 45, 102-106.	1.5	1

#	Article	IF	CITATIONS
37	NMR study of phase transitions in dicalcium barium propionate and dicalcium lead propionate. Phase Transitions, 1985, 5, 169-186.	1.3	4