
Thibaut Sylvestre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/406363/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato–Lefever model. Optics Letters, 2013, 38, 37.	1.7	505
2	Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability. Nature Communications, 2016, 7, 13675.	5.8	175
3	Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre. Nature Communications, 2014, 5, 5242.	5.8	142
4	Real-time full bandwidth measurement of spectral noise in supercontinuum generation. Scientific Reports, 2012, 2, 882.	1.6	137
5	Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers. Optics Express, 2004, 12, 2838.	1.7	132
6	Self-induced modulational instability laser revisited: normal dispersion and dark-pulse train generation. Optics Letters, 2002, 27, 482.	1.7	128
7	Universality of the Peregrine Soliton in the Focusing Dynamics of the Cubic Nonlinear SchrĶdinger Equation. Physical Review Letters, 2017, 119, 033901.	2.9	103
8	Real time noise and wavelength correlations in octave-spanning supercontinuum generation. Optics Express, 2013, 21, 18452.	1.7	87
9	Complete experimental characterization of stimulated Brillouin scattering in photonic crystal fiber. Optics Express, 2007, 15, 15517.	1.7	85
10	Guided acoustic wave Brillouin scattering in photonic crystal fibers. Optics Letters, 2007, 32, 17.	1.7	82
11	Phononic band-gap guidance of acoustic modes in photonic crystal fibers. Physical Review B, 2005, 71, .	1.1	80
12	Symmetry-Breaking Instability of Multimode Vector Solitons. Physical Review Letters, 2002, 89, 083901.	2.9	75
13	Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths. Optics Express, 2007, 15, 11553.	1.7	74
14	Amplitude noise and coherence degradation of femtosecond supercontinuum generation in all-normal-dispersion fibers. Journal of the Optical Society of America B: Optical Physics, 2019, 36, A161.	0.9	72
15	Passively mode-locked Raman fiber laser with 100 GHz repetition rate. Optics Letters, 2006, 31, 3489.	1.7	71
16	Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchiplaser. Optics Letters, 2003, 28, 1820.	1.7	68
17	Broadband and flat parametric amplifiers with a multisection dispersion-tailored nonlinear fiber arrangement. Journal of the Optical Society of America B: Optical Physics, 2003, 20, 1532.	0.9	66
18	Impact of Pump Phase Modulation on the Gain of Fiber Optical Parametric Amplifier. IEEE Photonics Technology Letters, 2004, 16, 1289-1291.	1.3	65

#	Article	IF	CITATIONS
19	Cascaded Brillouin lasing in monolithic barium fluoride whispering gallery mode resonators. Applied Physics Letters, 2014, 105, .	1.5	65
20	Far-detuned cascaded intermodal four-wave mixing in a multimode fiber. Optics Letters, 2017, 42, 1293.	1.7	59
21	Brillouin spectroscopy of optical microfibers and nanofibers. Optica, 2017, 4, 1232.	4.8	59
22	Recent advances in supercontinuum generation in specialty optical fibers [Invited]. Journal of the Optical Society of America B: Optical Physics, 2021, 38, F90.	0.9	59
23	2–10µm Midâ€Infrared Fiberâ€Based Supercontinuum Laser Source: Experiment and Simulation. Laser and Photonics Reviews, 2020, 14, 2000011.	4.4	56
24	Dynamics of an ultrahigh-repetition-rate passively mode-locked Raman fiber laser. Journal of the Optical Society of America B: Optical Physics, 2008, 25, 1178.	0.9	55
25	Raman-assisted parametric frequency conversion in a normally dispersive single-mode fiber. Optics Letters, 1999, 24, 1561.	1.7	51
26	Impact of pump OSNR on noise figure for fiber-optical parametric amplifiers. IEEE Photonics Technology Letters, 2005, 17, 1178-1180.	1.3	49
27	Noise-like pulses generated at high harmonics in a partially-mode-locked km-long Raman fiber laser. Applied Physics B: Lasers and Optics, 2012, 106, 283-287.	1.1	48
28	Far-detuned mid-infrared frequency conversion via normal dispersion modulation instability in chalcogenide microwires. Optics Letters, 2014, 39, 1885.	1.7	47
29	Real-time characterization of spectral instabilities in a mode-locked fibre laser exhibiting soliton-similariton dynamics. Scientific Reports, 2019, 9, 13950.	1.6	45
30	Annular aperture arrays: study in the visible region of the electromagnetic spectrum. Optics Letters, 2005, 30, 1611.	1.7	44
31	Symmetry-breaking dynamics of the modulational instability spectrum. Optics Letters, 2011, 36, 1359.	1.7	39
32	Dark and bright pulse passive mode-locked laser with in-cavity pulse-shaper. Optics Express, 2010, 18, 22715.	1.7	38
33	Supercontinuum generation using continuous-wave multiwavelength pumping and dispersion management. Optics Letters, 2006, 31, 2036.	1.7	35
34	Incoherent resonant seeding of modulation instability in optical fiber. Optics Letters, 2013, 38, 5338.	1.7	35
35	Supercontinuum generation by intermodal four-wave mixing in a step-index few-mode fibre. APL Photonics, 2019, 4, .	3.0	35
36	Reduction and control of stimulated Brillouin scattering in polymer-coated chalcogenide optical microwires. Optics Letters, 2014, 39, 482.	1.7	33

#	Article	IF	CITATIONS
37	Intracavity incoherent supercontinuum dynamics and rogue waves in a broadband dissipative soliton laser. Nature Communications, 2021, 12, 5567.	5.8	32
38	Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification. IEEE Photonics Technology Letters, 2006, 18, 22-24.	1.3	31
39	Generation of vector dark-soliton trains by induced modulational instability in a highly birefringent fiber. Journal of the Optical Society of America B: Optical Physics, 1999, 16, 1642.	0.9	30
40	20 THz-bandwidth continuous-wave fiber optical parametric amplifier operating at 1 Âμm using a dispersion-stabilized photonic crystal fiber. Optics Express, 2012, 20, 28906.	1.7	30
41	Chalcogenide-glass polarization-maintaining photonic crystal fiber for mid-infrared supercontinuum generation. JPhys Photonics, 2019, 1, 044003.	2.2	30
42	Ultra-flat, low-noise, and linearly polarized fiber supercontinuum source covering 670–1390  nm. Optics Letters, 2021, 46, 1820.	1.7	29
43	Demonstration of polarization pulling using a fiber-optic parametric amplifier. Optics Express, 2012, 20, 27248.	1.7	28
44	Seeded intermodal four-wave mixing in a highly multimode fiber. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 295.	0.9	27
45	Experimental observation of the elliptically polarized fundamental vector soliton of isotropic Kerr media. Optics Letters, 2005, 30, 3383.	1.7	26
46	Ultralow chromatic dispersion measurement of optical fibers with a tunable fiber laser. IEEE Photonics Technology Letters, 2006, 18, 1825-1827.	1.3	26
47	Parametric amplification and wavelength conversion in the 1040–1090 nm band by use of a photonic crystal fiber. Applied Physics Letters, 2009, 94, 111104.	1.5	26
48	Cascaded Raman generation in optical fibers: influence of chromatic dispersion and Rayleigh backscattering. Optics Letters, 2004, 29, 998.	1.7	25
49	Frequency-selective excitation of guided acoustic modes in a photonic crystal fiber. Optics Express, 2011, 19, 7689.	1.7	25
50	Slow-Light Spatial Solitons. Physical Review Letters, 2008, 100, 013908.	2.9	24
51	Supercontinuum generation by stimulated Raman–Kerr scattering in a liquid-core optical fiber. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 1677.	0.9	24
52	Large Brillouin gain in Germania-doped core optical fibers up to a 98  mol% doping level. Optics Letters, 2018, 43, 4005.	1.7	23
53	Impact of pump phase modulation on system performance of fibre-optical parametric amplifiers. Electronics Letters, 2005, 41, 350.	0.5	21
54	Supercontinuum Generation From 1.35 to 1.7 \$mu\$m by Nanosecond Pumping Near the Second Zero- Dispersion Wavelength of a Microstructured Fiber. IEEE Photonics Technology Letters, 2008, 20, 842-844.	1.3	21

#	Article	IF	CITATIONS
55	Photonic crystal fiber mapping using Brillouin echoes distributed sensing. Optics Express, 2010, 18, 20136.	1.7	21
56	Black-light continuum generation in a silica-core photonic crystal fiber. Optics Letters, 2012, 37, 130.	1.7	19
57	Supercontinuum generation in heavy-metal oxide glass based suspended-core photonic crystal fibers. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 2311.	0.9	19
58	Demonstration of passive modelocking through dissipative four-wave mixing in fibre laser. Electronics Letters, 2001, 37, 881.	0.5	18
59	Generation of multicolor vector Kerr solitons by cross-phase modulation, four-wave mixing, and stimulated Raman scattering. Optics Letters, 2006, 31, 3480.	1.7	17
60	Polarization dynamics of the fundamental vector soliton of isotropic Kerr media. Physical Review E, 2007, 75, 016611.	0.8	17
61	Temperature coefficient of the high-frequency guided acoustic mode in a photonic crystal fiber. Applied Optics, 2011, 50, 6543.	2.1	17
62	Comparative analysis of stimulated Brillouin scattering at 2  µm in various infrared glass-based optical fibers. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 3792.	0.9	17
63	Nested capillary anti-resonant silica fiber with mid-infrared transmission and low bending sensitivity at 4000  nm. Optics Letters, 2019, 44, 4395.	1.7	17
64	Demonstration of an All-Fiber Broadband Optical Parametric Amplifier at 1 \$mu\$m. Journal of Lightwave Technology, 2010, 28, 2173-2178.	2.7	16
65	Quantum fluctuations and correlations of spatial scalar or multimode vector solitons in Kerr media. Journal of Optics B: Quantum and Semiclassical Optics, 2004, 6, S295-S302.	1.4	15
66	Differential Phase-Shift-Keying Technique-Based Brillouin Echo-Distributed Sensing. IEEE Photonics Technology Letters, 2012, 24, 79-81.	1.3	15
67	Nanoimprinting and tapering of chalcogenide photonic crystal fibers for cascaded supercontinuum generation. Optics Letters, 2019, 44, 5505.	1.7	15
68	Theoretical study of gain distortions in dual-pump fiber optical parametric amplifiers. Optics Communications, 2006, 267, 244-252.	1.0	14
69	Brillouin Optical Time-Domain Analysis of Fiber-Optic Parametric Amplifiers. IEEE Photonics Technology Letters, 2007, 19, 179-181.	1.3	14
70	Widely Tunable Parametric Amplification and Pulse Train Generation by Heating a Photonic Crystal Fiber. IEEE Journal of Quantum Electronics, 2011, 47, 1514-1518.	1.0	14
71	Supercontinuum generation by nanosecond dual-pumping near the two zero-dispersion wavelengths of a photonic crystal fiber. Optics Communications, 2011, 284, 467-470.	1.0	14
72	Towards athermal Brillouin strain sensing based on heavily germania-doped core optical fibers. APL Photonics, 2019, 4, .	3.0	14

#	Article	IF	CITATIONS
73	Cross-phase modulation instability in PM ANDi fiber-based supercontinuum generation. Optics Letters, 2020, 45, 3545.	1.7	14
74	Investigation of gain ripple in two-pump fiber optical parametric amplifiers. Optics Letters, 2008, 33, 2203.	1.7	13
75	Comment on "Dark pulse emission of a fiber laser― Physical Review A, 2010, 82, .	1.0	13
76	Stimulated Raman–Kerr scattering in an integrated nonlinear optofluidic fiber arrangement. Optics Letters, 2014, 39, 5407.	1.7	13
77	SBS Mitigation in a Microstructured Optical Fiber by Periodically Varying the Core Diameter. IEEE Photonics Technology Letters, 2012, 24, 667-669.	1.3	12
78	Nonlinear elasticity of silica nanofiber. APL Photonics, 2019, 4, .	3.0	12
79	Coupled-mode analysis of stimulated Raman scattering and four-wave mixing in wavelength-division multiplexed systems. Optics Communications, 2005, 250, 191-201.	1.0	11
80	Surface Brillouin scattering in photonic crystal fibers. Optics Letters, 2016, 41, 3269.	1.7	11
81	Demonstration of stimulated-Raman-scattering suppression in optical fibers in a multifrequency pumping configuration. Journal of the Optical Society of America B: Optical Physics, 1999, 16, 757.	0.9	10
82	Cancellation of Raman pulse walk-off by slow light. Optics Letters, 2008, 33, 2506.	1.7	10
83	Demonstration of the evanescent Kerr effect in optical nanofibers. Optics Express, 2019, 27, 29460.	1.7	10
84	Numerical modeling of a four-wave-mixing-assisted Raman fiber laser. Optics Letters, 2004, 29, 2719.	1.7	9
85	Simple methods for crosstalk reduction in fiber optical parametric amplifiers. Optics Communications, 2007, 275, 448-452.	1.0	9
86	Low-threshold all-fiber 1000nm supercontinuum source based on highly non-linear fiber. Optics Communications, 2008, 281, 4095-4098.	1.0	9
87	Raman-assisted three-wave mixing of non-phase-matched waves in optical fibres: application to wide-range frequency conversion. Optics Communications, 2001, 192, 107-121.	1.0	8
88	All-optical tunable pulse frequency chirp via slow light. Optics Letters, 2009, 34, 3824.	1.7	8
89	Distributed Brillouin Fiber Sensor With Enhanced Sensitivity Based on Anti-Stokes Single-Sideband Suppressed-Carrier Modulation. IEEE Photonics Technology Letters, 2013, 25, 94-96.	1.3	8
90	Strong coupling between phonons and optical beating in backward Brillouin scattering. Physical Review A, 2016, 94, .	1.0	8

#	Article	IF	CITATIONS
91	2-î¼m Brillouin laser based on infrared nonlinear glass fibers. Applied Optics, 2019, 58, 6365.	0.9	8
92	Raman-induced power tilt in arbitrarily large wavelength-division-multiplexed systems. IEEE Photonics Technology Letters, 2005, 17, 88-90.	1.3	7
93	Multimode Brillouin spectrum in a long tapered birefringent photonic crystal fiber. Optics Letters, 2015, 40, 4281.	1.7	7
94	Stimulated Raman suppression under dual-frequency pumping in singlemode fibres. Electronics Letters, 1998, 34, 1417.	0.5	6
95	Numerical and experimental investigations of vector soliton bound-states in a Kerr planar waveguide. Optics Communications, 2005, 249, 285-291.	1.0	6
96	Observation of acoustically induced modulation instability in a Brillouin photonic crystal fiber laser. Optics Letters, 2013, 38, 1570.	1.7	6
97	Broadband and nearly flat parametric gain in single-mode fibers. , 0, , .		5
98	Interplay of four-wave mixing processes with a mixed coherent-incoherent pump. Optics Express, 2010, 18, 25833.	1.7	5
99	Cascaded Raman slow light and optical spatial solitons in Kerr media. Physical Review A, 2013, 87, .	1.0	5
100	Wavelength conversion from 1.3 µm to 1.5 µm in single-mode optical fibres using Raman-assisted three-wave mixing. Journal of Optics, 2000, 2, 132-141.	1.5	4
101	Tunable optical delay using parametric amplification in highly birefringent optical fibers. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 2352.	0.9	4
102	Tunable stimulated Brillouin scattering in hybrid polymer-chalcogenide tapered fibers. , 2014, , .		4
103	Impact of the longitudinal variations of the chromatic dispersion on the gain of fiber parametric amplifiers. , 2003, , .		4
104	Combined Spectral Effects of Pulse Walk-Off and Degenerate Cross-Phase Modulation in Birefringent Fibers. Journal of Nonlinear Optical Physics and Materials, 1997, 06, 313-320.	1.1	3
105	Suppression of stimulated Raman scattering in optical fibres by power-controlled multifrequency pumping. Optics Communications, 1999, 159, 32-36.	1.0	3
106	Pump-power-dependent gain for small-signal parametric amplification in birefringent fibres. Optics Communications, 2001, 191, 245-251.	1.0	3
107	Fiber Optical Parametric Amplifier Based on a Novel LiNbO <inf>3</inf> Synchronized double Phase Modulator. , 2007, , .		3
108	Demonstration of an Integrated LiNbO <formula formulatype="inline"> <tex>\$_3\$</tex></formula> Synchronized Double Phase Modulator and Its Application to Dual-Pump Fiber Optical Parametric Amplifiers and Wavelength Converters. Journal of Lightwave Technology, 2008, 26, 777-781.	2.7	3

#	Article	IF	CITATIONS
109	Beam steering using optical parametric amplification in Kerr medium: a space-time analogy of parametric slow-light. Optics Express, 2012, 20, 27396.	1.7	3
110	Fiber optic Brillouin distributed sensing using phase-shift keying modulation techniques. , 2012, , .		3
111	Sensitivity enhancement in long-range distributed Brillouin fiber sensor using an anti-Stokes single-sideband probe and a bidirectional EDFA. , 2012, , .		3
112	Broadband and flat parametric gain with a single low-power pump in a multi-section fiber arrangement. , 0, , .		2
113	Simple Method for Crosstalk Reduction in Fiber Optical Parametric Amplifiers. , 2006, , .		2
114	Experimental Observation of Large Guided Acoustic Wave Brillouin Scattering in Photonic Crystal Fibres. , 2006, , .		2
115	Spatio-temporal dynamics of multicolor spatial Kerr solitons. Optical and Quantum Electronics, 2008, 40, 271-279.	1.5	2
116	Extended blue side of flat supercontinuum generation in PCFs with a CW Yb fiber laser. , 2008, , .		2
117	Pulse repetition rate multiplication in fibre laser using higher-order passive modelocking. Electronics Letters, 2008, 44, 1240.	0.5	2
118	Experimental observation of surface acoustic wave Brillouin scattering in a small-core photonic crystal fiber. , 2016, , .		2
119	Special Issue on Brillouin Scattering and Optomechanics. Applied Sciences (Switzerland), 2019, 9, 3745.	1.3	2
120	Suppression of SBS in a photonic crystal fiber with periodically-varied core diameter. , 2011, , .		2
121	Silica-based photonic crystal fiber for the generation of broad band UV radiation. OSA Continuum, 2020, 3, 31.	1.8	2
122	Stimulated Brillouin scattering in hybrid chalcogenide-PMMA microwires. , 2013, , .		2
123	Raman-induced slow light on spatial soliton in Kerr media. , 2007, , .		2
124	Nonlinear effects get into shape. Nature Physics, 2022, 18, 4-5.	6.5	2
125	Stability Enhancement for Dual-Order Raman Fiber Lasers. IEEE Photonics Technology Letters, 2004, 16, 2018-2020.	1.3	1
126	Investigation of electrical noise figure for fiber optical parametric amplifiers. , 2005, , .		1

#	Article	IF	CITATIONS
127	Collision between scalar and vector spatial solitons in Kerr media. Optical and Quantum Electronics, 2008, 40, 281-291.	1.5	1
128	Impact of pump quality on the performances of fibre optical parametric amplifiers. , 2008, , .		1
129	System Performances of Fiber Optical Parametric Amplifiers. Fiber and Integrated Optics, 2008, 27, 516-531.	1.7	1
130	Role of microstructure on guided acoustic wave Brillouin scattering in photonic crystal fibers. Proceedings of SPIE, 2009, , .	0.8	1
131	Effect of inhomogeneities on backward and forward Brillouin scattering in photonic crystal fibers. Proceedings of SPIE, 2010, , .	0.8	1
132	Experimental observation of Brillouin linewidth broadening and decay time in photonic crystal fiber. , 2010, , .		1
133	Symmetry-breaking instability of quadratic soliton bound states. Physical Review A, 2011, 83, .	1.0	1
134	Symmetry-breaking dynamics of the modulational instability spectrum. , 2011, , .		1
135	Observation of surface acoustic wave Brillouin scattering in optical microfibers. , 2013, , .		1
136	Normal dispersion modulation instability in an As ₂ Se ₃ chalcogenide hybrid microwire. Proceedings of SPIE, 2014, , .	0.8	1
137	Shaping Brillouin Light in Specialty Optical Fibers. , 2017, , 461-476.		1
138	On-chip Earth spin detection. Nature Photonics, 2020, 14, 341-343.	15.6	1
139	Slow light induced by stimulated Raman scattering on spatial Kerr soliton. Annales De Physique, 2007, 32, 103-106.	0.2	1
140	Induced symmetry-breaking and polarization switching of spatial solitons through vector collision. , 2007, , .		1
141	Mapping the Uniformity of Optical Microwires Using Phase-Correlation Brillouin Distributed Measurements. , 2015, , .		1
142	Numerical and experimental study of the influence of chromatic dispersion on cascaded Raman generation in optical fibers. , 2003, , .		1
143	Temperature and strain Brillouin sensing coefficients of heavily doped Germanium-core optical fibers. , 2018, , .		1
144	Real-time noise measurement in supercontinuum generation in PM and non-PM ANDi tellurite fibers. , 2020, , .		1

#	Article	IF	CITATIONS
145	Mid-infrared detection of organic compounds with a 2-10 µm supercontinuum source generated from concatenated fluoride and chalcogenide fibers (Conference Presentation). , 2020, , .		1
146	Ultra-flat, low-noise, and linearly polarized fiber supercontinuum source covering 670–1390 nm: publisher's note. Optics Letters, 2022, 47, 2064.	1.7	1
147	Noise in supercontinuum generated using PM and non-PM tellurite glass all-normal dispersion fibers. Optics Letters, 2022, 47, 2550.	1.7	1
148	Suppression of a Stimulated Raman Sideband Under Dual-Wavelength Pumping in a Single-Mode Fiber. , 0, , .		0
149	Wavelength conversion from 1.3 l̂¼m to 1.5 l̂¼m bands in a nonlinear dispersion-shifted fiber. , 0, , .		0
150	Dynamics of stimulated Raman scattering and four-wave mixing in wavelength-division-multiplexed systems. , 2001, , OTuE18.		0
151	Weak-wave advancement in nearly collinear four-wave mixing: comment. Optics Express, 2004, 12, 2566.	1.7	0
152	Experimental Observation of the Elliptically Polarized Fundamental Vector Soliton of Isotropic Kerr Media. , 2005, , FA4.		0
153	Continuum generation in continuous-wave-pumped dispersion-shifted fibers. , 0, , .		0
154	Brillouin Optical Time Domain Analysis of Fiber Optic Parametric Amplifiers. , 2006, , .		0
155	Ultra-high repetition-rate passively mode-locked Raman fiber laser. , 2006, , .		0
156	Ultra-low Chromatic D= ispersion Measurement of Optical F. Ibers With a Tunable Fiber Laser. , 2006, , .		0
157	Simultaneous observation of multiple four-wave mixing processes in the phase-matched and non-phase-matched regimes. , 2007, , .		0
158	Tailoring strong cw supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths. , 2007, , .		0
159	Spatio-temporal dynamics of generation of multicolor spatial Kerr solitons. , 2007, , .		0
160	Supercontinuum generation from 1350 to 1700 nm by nanosecond pumping near the second zero dispersion wavelength of a photonic crystal fiber. , 2008, , .		0
161	Gain oscillations in two-pump fiber optical parametric amplifiers. , 2008, , .		0
162	Cancellation of pulse walk-off in Raman amplifiers via slow light. , 2008, , .		0

#	Article	IF	CITATIONS
163	Noise-characterization of an ultra-fast Raman fiber laser. , 2008, , .		0
164	Characterization of a passively mode-locked Raman fiber laser. , 2008, , .		0
165	Effect of Raman slow light on pulse walk-off and frequency chirp. , 2009, , .		0
166	Demonstration of Parametric Amplification at $1 \hat{A} \mu m$ by use of a Microstructured Optical Fiber. , 2009, , .		0
167	Pulse-shape selection of an ultra-high repetition rate wavelength and repetition rate tunable mode-locked laser: From bright to dark pulses. , 2010, , .		0
168	Tuning both the pulse walk-off and the frequency chirp in Raman slow light media. , 2010, , .		0
169	All-fiber optical parametric amplifier at 1 μm using a microstructured fiber. , 2010, , .		0
170	Observation of brillouin linewidth broadening and decay time in photonic crystal fiber. , 2010, , .		0
171	Publisher's Note: Symmetry-breaking instability of quadratic soliton bound states [Phys. Rev. A83, 013807 (2011)]. Physical Review A, 2011, 83, .	1.0	0
172	High-harmonic km-long self-pulsed Raman fiber laser. , 2011, , .		0
173	Opto-acoustic coupling and Brillouin phenomena in microstructure optical fibers. , 2012, , .		0
174	Supercontinuum generation in the black light region by pumping at 355 nm a silica photonic crystal fiber. Proceedings of SPIE, 2012, , .	0.8	0
175	Real time spectra and wavelength correlation maps: New insights into octave-spanning supercontinuum generation and rogue waves. , 2013, , .		0
176	Fiber optical parametric polarizer. , 2013, , .		0
177	Dispersive time stretching measurements of real-time spectra and statistics for supercontinuum generation around 1550 nm. , 2013, , .		0
178	Steady-state and instabilities of octave-spanning Kerr frequency combs modeled using a generalized Lugiato-Lefever equation. , 2013, , .		0
179	All-optical generation of surface acoustic waves in a silica optical microwire. Proceedings of SPIE, 2014, , .	0.8	0
180	Brillouin light scattering from surface acoustic waves in photonic microwires. , 2014, , .		0

#	Article	IF	CITATIONS
181	Mid-IR parametric frequency generation in hybrid As2Se3 microwires using normal dispersion modulation instability. , 2014, , .		0
182	Controlling modulation instability using an incoherent low amplitude seed. , 2014, , .		0
183	Mid-IR frequency conversion and supercontinuum generation in polymer-coated chalcogenide microfibers. , 2014, , .		0
184	Stimulated Brillouin scattering in polymer-coated chalcogenide microfibers. , 2014, , .		0
185	Subwavelength-diameter optical fibers for Brillouin scattering. , 2015, , .		0
186	Multimode Brillouin scattering in a long tapered birefringent photonic crystal fiber. , 2015, , .		0
187	Real Time Measurements of Temporal Rogue Waves and Spontaneous Modulation Instability in Optical Fiber. , 2016, , .		0
188	Highly sensitive measurement of submicron waveguides based on Brillouin scattering. , 2017, , .		0
189	Surface Brillouin scattering in optical microfibers. , 2017, , .		0
190	Supercontinuum generation in an optical fiber capillary filled with Toluene. , 2017, , .		0
191	Two octave supercontinuum generation by cascaded intermodal four-wave mixing in a step-index few-mode fiber. , 2018, , .		0
192	Intermodal Modulation Instability and Four-Wave Mixing in Graded-Index Few-Mode Fibers. , 2018, , .		0
193	Noise Evolution in All-Normal Dispersion Supercontinuum Generation. , 2019, , .		0
194	Generation of an ultra-flat, low-noise and linearly polarized fiber supercontinuum covering 670 nm-1390 nm. , 2021, , .		0
195	Cascaded Raman generation in optical fibers : Influence of chromatic dispersion and Rayleigh backscattering. , 2004, , .		0
196	Influence of the phase modulation of the pump wave in fiber optical parametric amplifiers. , 2004, , .		0
197	Quantum fluctuations and correlations of multimode vector solitons in Kerr media. , 2004, , .		0
198	Numerical modeling of four-wave mixing-assisted Raman fiber laser. , 2004, , .		0

#	Article	IF	CITATIONS
199	Numerical and experimental investigations of vector soliton bound-states in a Kerr planar waveguide. , 2004, , .		0
200	Continuum generation in a dispersion-shifted fiber using one or two continuous-wave Raman fiber lasers. , 2005, , .		0
201	Observation expérimentale d'un soliton spatial bicolore dans un milieu Kerr en présence de diffusion Raman stimulée. European Physical Journal Special Topics, 2006, 135, 309-310.	0.2	Ο
202	Guided Acoustic Wave Brillouin Scattering in a Nanostructure Core Fiber. , 2010, , .		0
203	Tunable optical delay using parametric amplification in highly-birefringent optical fibers. , 2010, , .		0
204	Multicolor soliton and cascaded Raman generation in a nonlinear planar waveguide. , 2010, , .		0
205	Brillouin echo-distributed sensing based on differential phase-shift keying technique. , 2011, , .		0
206	Demonstration of polarization pulling in a fiber-optical parametric amplifier. , 2012, , .		0
207	Supercontinuum generation with picosecond ultraviolet pulses in a solid-core photonic crystal fiber. , 2012, , .		Ο
208	Experimental demonstration of all-fiber continuous wave optical parametric amplifier operating at 1 ŵm. , 2012, , .		0
209	Beam steering using spatial OPA in Kerr media: a space-time analogy of parametric slow-light. , 2012, , .		0
210	Capteur Brillouin réparti à fibre optique à haute résolution et longue portée. Instrumentation Mesure Metrologie, 2013, 13, 31-45.	0.2	0
211	Coupling light into a whispering-gallery mode resonator with self-focused beam. , 2014, , .		Ο
212	Observation of surface Brillouin scattering in microstructured optical fibers. , 2016, , .		0
213	Direct Measurement of Temporal Rogue Waves Generated by Spontaneous Modulation Instability. , 2016, , .		Ο
214	Mid-Infrared Wavelength Conversion in Chalcogenide Optical Microfibers. , 2016, , .		0
215	Real-Time Measurements of Ultrafast Spontaneous Modulation Instability in Optical Fiber. , 2017, , .		0
216	Supercontinuum generation by cascaded intermodal Raman and FWM processes in step-index few-mode fibers. , 2018, , .		0

#	Article	IF	CITATIONS
217	Stimulated Brillouin scattering in Germanium-doped-core optical fibers up to 98% mol doping level. , 2018, , .		0
218	Brillouin reflectometry of optical microfibers. , 2018, , .		0
219	Supercontinuum generation and intermodal four-wave mixing in a step-index few-mode fibre. , 2018, , .		Ο
220	Diameter and tensile strain measurements of optical nanofibers using Brillouin reflectometry. , 2018, , \cdot		0
221	Femtosecond supercontinuum generation with noisy pumps in normal dispersion fibers with zero crossings. , 2019, , .		0