Tao Chen

List of Publications by Citations

Source: https://exaly.com/author-pdf/4063562/tao-chen-publications-by-citations.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

180 9,350 91 54 h-index g-index papers citations 6.34 10.1 190 11,022 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
180	All-Inorganic Perovskite Solar Cells. <i>Journal of the American Chemical Society</i> , 2016 , 138, 15829-15832	16.4	700
179	Self-Templated Formation of Interlaced Carbon Nanotubes Threaded Hollow CoS Nanoboxes for High-Rate and Heat-Resistant Lithium-Sulfur Batteries. <i>Journal of the American Chemical Society</i> , 2017 , 139, 12710-12715	16.4	364
178	A Hierarchically Nanostructured Composite of MnO2/Conjugated Polymer/Graphene for High-Performance Lithium Ion Batteries. <i>Advanced Energy Materials</i> , 2011 , 1, 736-741	21.8	255
177	Significant Improvement of Dye-Sensitized Solar Cell Performance Using Simple Phenothiazine-Based Dyes. <i>Chemistry of Materials</i> , 2013 , 25, 2146-2153	9.6	231
176	Highly Efficient Retention of Polysulfides in "Sea Urchin"-Like Carbon Nanotube/Nanopolyhedra Superstructures as Cathode Material for Ultralong-Life Lithium-Sulfur Batteries. <i>Nano Letters</i> , 2017 , 17, 437-444	11.5	194
175	Enhancement of low energy sunlight harvesting in dye-sensitized solar cells using plasmonic gold nanorods. <i>Energy and Environmental Science</i> , 2012 , 5, 9444	35.4	189
174	Controlled assembly of eccentrically encapsulated gold nanoparticles. <i>Journal of the American Chemical Society</i> , 2008 , 130, 11858-9	16.4	182
173	Strong Capillarity, Chemisorption, and Electrocatalytic Capability of Crisscrossed Nanostraws Enabled Flexible, High-Rate, and Long-Cycling Lithium-Sulfur Batteries. <i>ACS Nano</i> , 2018 , 12, 4868-4876	16.7	177
172	Porous-Shell Vanadium Nitride Nanobubbles with Ultrahigh Areal Sulfur Loading for High-Capacity and Long-Life Lithium-Sulfur Batteries. <i>Nano Letters</i> , 2017 , 17, 7839-7846	11.5	172
171	Hotspot-induced transformation of surface-enhanced Raman scattering fingerprints. <i>ACS Nano</i> , 2010 , 4, 3087-94	16.7	172
170	Cerium Oxide Nanocrystal Embedded Bimodal Micromesoporous Nitrogen-Rich Carbon Nanospheres as Effective Sulfur Host for Lithium-Sulfur Batteries. <i>ACS Nano</i> , 2017 , 11, 7274-7283	16.7	167
169	Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency. <i>Nature Energy</i> , 2020 , 5, 587-595	62.3	162
168	(Gold core)/(titania shell) nanostructures for plasmon-enhanced photon harvesting and generation of reactive oxygen species. <i>Energy and Environmental Science</i> , 2014 , 7, 3431-3438	35.4	161
167	Walnut-Like MulticoreBhell MnO Encapsulated Nitrogen-Rich Carbon Nanocapsules as Anode Material for Long-Cycling and Soft-Packed Lithium-Ion Batteries. <i>Advanced Functional Materials</i> , 2018 , 28, 1800003	15.6	148
166	Polymer-encapsulated gold-nanoparticle dimers: facile preparation and catalytical application in guided growth of dimeric ZnO-nanowires. <i>Nano Letters</i> , 2008 , 8, 2643-7	11.5	147
165	In Situ Thermal Synthesis of Inlaid Ultrathin MoS2/Graphene Nanosheets as Electrocatalysts for the Hydrogen Evolution Reaction. <i>Chemistry of Materials</i> , 2016 , 28, 5733-5742	9.6	145
164	Scalable Routes to Janus AußiO2 and Ternary AgAußiO2 Nanoparticles. <i>Chemistry of Materials</i> , 2010 , 22, 3826-3828	9.6	145

(2018-2019)

163	Low-Temperature in Situ Amino Functionalization of TIO Nanoparticles Sharpens Electron Management Achieving over 21% Efficient Planar Perovskite Solar Cells. <i>Advanced Materials</i> , 2019 , 31, e1806095	24	136
162	Development of polymer-encapsulated metal nanoparticles as surface-enhanced Raman scattering probes. <i>Small</i> , 2009 , 5, 198-202	11	129
161	Pine needle-derived microporous nitrogen-doped carbon frameworks exhibit high performances in electrocatalytic hydrogen evolution reaction and supercapacitors. <i>Nanoscale</i> , 2017 , 9, 1237-1243	7.7	121
160	Interface Functionalization of Photoelectrodes with Graphene for High Performance Dye-Sensitized Solar Cells. <i>Advanced Functional Materials</i> , 2012 , 22, 5245-5250	15.6	120
159	Highly Branched VS Nanodendrites with 1D Atomic-Chain Structure as a Promising Cathode Material for Long-Cycling Magnesium Batteries. <i>Advanced Materials</i> , 2018 , 30, e1802563	24	119
158	Template Synthesis of CuInS2 Nanocrystals from In2S3 Nanoplates and Their Application as Counter Electrodes in Dye-Sensitized Solar Cells. <i>Chemistry of Materials</i> , 2015 , 27, 5949-5956	9.6	117
157	Reducing the symmetry of bimetallic Au@Ag nanoparticles by exploiting eccentric polymer shells. Journal of the American Chemical Society, 2010 , 132, 9537-9	16.4	117
156	MoS2-Based All-Purpose Fibrous Electrode and Self-Powering Energy Fiber for Efficient Energy Harvesting and Storage. <i>Advanced Energy Materials</i> , 2017 , 7, 1601208	21.8	110
155	Engineering "hot" nanoparticles for surface-enhanced Raman scattering by embedding reporter molecules in metal layers. <i>Small</i> , 2012 , 8, 246-51	11	109
154	A fast chemical approach towards SbS film with a large grain size for high-performance planar heterojunction solar cells. <i>Nanoscale</i> , 2017 , 9, 3386-3390	7.7	108
153	Perovskite photovoltaics: a high-efficiency newcomer to the solar cell family. <i>Nanoscale</i> , 2014 , 6, 12287	- 9 7⁄7	104
152	Development of antimony sulfideBelenide Sb2(S, Se)3-based solar cells. <i>Journal of Energy Chemistry</i> , 2018 , 27, 713-721	12	100
151	Mechanical nanosprings: induced coiling and uncoiling of ultrathin Au nanowires. <i>Journal of the American Chemical Society</i> , 2010 , 132, 11920-2	16.4	92
150	Solution-Processable Ionic Liquid as an Independent or Modifying Electron Transport Layer for High-Efficiency Perovskite Solar Cells. <i>ACS Applied Materials & Description</i> (1988) 1881 (1988) 1982 (1	9.5	90
149	Light-triggered reversible self-assembly of gold nanoparticle oligomers for tunable SERS. <i>Langmuir</i> , 2015 , 31, 1164-71	4	90
148	Conformational engineering of co-sensitizers to retard back charge transfer for high-efficiency dye-sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 11553	13	88
147	Fabrication of polymer nanocavities with tailored openings. ACS Nano, 2009, 3, 3469-74	16.7	85
146	Atomic Substitution Enabled Synthesis of Vacancy-Rich Two-Dimensional Black TiO Nanoflakes for High-Performance Rechargeable Magnesium Batteries. <i>ACS Nano</i> , 2018 , 12, 12492-12502	16.7	85

(2018-2017)

127	Nonconjugated Polymer Poly(vinylpyrrolidone) as an Efficient Interlayer Promoting Electron Transport for Perovskite Solar Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 32957-32964	9.5	54	
126	Bulk heterojunction gifts bismuth-based lead-free perovskite solar cells with record efficiency. <i>Nano Energy</i> , 2020 , 68, 104362	17.1	54	
125	Hierarchical porous nitrogen-rich carbon nanospheres with high and durable capabilities for lithium and sodium storage. <i>Nanoscale</i> , 2016 , 8, 17911-17918	7.7	54	
124	Promising Sb2(S,Se)3 Solar Cells with High Open Voltage by Application of a TiO2/CdS Double Buffer Layer. <i>Solar Rrl</i> , 2018 , 2, 1800208	7.1	54	
123	Acetate Salts as Nonhalogen Additives To Improve Perovskite Film Morphology for High-Efficiency Solar Cells. <i>ACS Applied Materials & Discrete Solar Cells.</i> 8, 15333-40	9.5	53	
122	Graphene <i>Solar Energy</i> , 2012 , 86, 2041-2048	6.8	53	
121	Hybrid ZnO nanorod-polymer brush hierarchically nanostructured substrate for sensitive antibody microarrays. <i>Advanced Materials</i> , 2015 , 27, 181-5	24	51	
120	Direct solution deposition of device quality Sb2S3-xSex films for high efficiency solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2018 , 183, 52-58	6.4	49	
119	Phase Engineering of Perovskite Materials for High-Efficiency Solar Cells: Rapid Conversion of CHNHPbI to Phase-Pure CHNHPbCl via Hydrochloric Acid Vapor Annealing Post-Treatment. <i>ACS Applied Materials & Discounty (Interfaces)</i> , 2018, 10, 1897-1908	9.5	49	
118	Bayesian linear regression and variable selection for spectroscopic calibration. <i>Analytica Chimica Acta</i> , 2009 , 631, 13-21	6.6	49	
117	Exceptionally Stable CHNHPbI Films in Moderate Humid Environmental Condition. <i>Advanced Science</i> , 2016 , 3, 1500262	13.6	48	
116	Co-sensitization of 3D bulky phenothiazine-cored photosensitizers with planar squaraine dyes for efficient dye-sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 13848-13855	13	46	
115	Efficient iodine-free dye-sensitized solar cells employing truxene-based organic dyes. <i>Chemical Communications</i> , 2012 , 48, 6645-7	5.8	46	
114	Over 6% Certified Sb2(S,Se)3 Solar Cells Fabricated via In Situ Hydrothermal Growth and Postselenization. <i>Advanced Electronic Materials</i> , 2019 , 5, 1800683	6.4	46	
113	Dendrite-Free and Stable Lithium Metal Anodes Enabled by an Antimony-Based Lithiophilic Interphase. <i>Chemistry of Materials</i> , 2019 , 31, 7565-7573	9.6	45	
112	Elucidating the reaction pathways in the synthesis of organolead trihalide perovskite for high-performance solar cells. <i>Scientific Reports</i> , 2015 , 5, 10557	4.9	45	
111	Additive regulated crystallization and film formation of CH3NH3PbI3\(\mathbb{B}\)Brx for highly efficient planar-heterojunction solar cells. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 18514-18520	13	44	
110	Interface Engineering of Anchored Ultrathin TiO/MoS Heterolayers for Highly-Efficient Electrochemical Hydrogen Production. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2018 , 10, 6084-6089	9.5	43	

109	Li3V2(PO4)3 encapsulated flexible free-standing nanofabric cathodes for fast charging and long life-cycle lithium-ion batteries. <i>Nanoscale</i> , 2016 , 8, 7408-15	7.7	43
108	High-performance Li-ion capacitor based on black-TiO2-x/graphene aerogel anode and biomass-derived microporous carbon cathode. <i>Nano Research</i> , 2019 , 12, 1713-1719	10	42
107	Graphene oxide-enabled tandem signal amplification for sensitive SPRi immunoassay in serum. <i>Chemical Communications</i> , 2014 , 50, 2133-5	5.8	41
106	Hydrogen storage in Ni B nanoalloy-doped 2D graphene. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 12950-12954	6.7	41
105	Hierarchical Ternary Carbide Nanoparticle/Carbon Nanotube-Inserted N-Doped Carbon Concave-Polyhedrons for Efficient Lithium and Sodium Storage. <i>ACS Applied Materials & Interfaces</i> , 2016 , 8, 26834-26841	9.5	40
104	Interfacial Engineering by Indium-Doped CdS for High Efficiency Solution Processed Sb(SSe) Solar Cells. <i>ACS Applied Materials & Doped CdS for High Efficiency Solution Processed Sb(SSe) Solar Cells. ACS Applied Materials & Doped CdS for High Efficiency Solution Processed Sb(SSe) Solar Cells. <i>ACS Applied Materials & Doped CdS for High Efficiency Solution Processed Sb(SSe) Solar Cells. ACS Applied Materials & Doped CdS for High Efficiency Solution Processed Sb(SSe) Solar Cells. <i>ACS Applied Materials & Doped CdS for High Efficiency Solution Processed Sb(SSe) Solar Cells. ACS Applied Materials & Doped CdS for High Efficiency Solution Processed Sb(SSe) Solar Cells. <i>ACS Applied Materials & Doped CdS for High Efficiency Solution Processed Sb(SSe) Solar Cells. ACS Applied Materials & Doped CdS for High Efficiency Solution Processed Sb(SSe) Solar Cells. ACS Applied Materials & Doped CdS for High Efficiency Solution Processed Sb(SSe) Solar Cells. ACS Applied Materials & Doped CdS for High Efficiency Solution Processed Sb(SSe) Solar Cells (Both Efficiency Solution Processed Sb(SSe) Solution Sb(SSe</i></i></i></i>	9.5	40
103	Vacuum assisted solution processing for highly efficient Sb2S3 solar cells. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 16322-16327	13	38
102	A portable flow-through fluorescent immunoassay lab-on-a-chip device using ZnO nanorod-decorated glass capillaries. <i>Lab on A Chip</i> , 2013 , 13, 1797-802	7.2	38
101	Revealing composition and structure dependent deep-level defect in antimony trisulfide photovoltaics. <i>Nature Communications</i> , 2021 , 12, 3260	17.4	37
100	Bottom-up synthesis of nitrogen-doped porous carbon scaffolds for lithium and sodium storage. <i>Nanoscale</i> , 2017 , 9, 1972-1977	7.7	36
99	Controlled growth and photoconductive properties of hexagonal SnS2 nanoflakes with mesa-shaped atomic steps. <i>Nano Research</i> , 2017 , 10, 1434-1447	10	36
98	Effects of various Econjugated spacers in thiadiazole[3,4-c]pyridine-cored panchromatic organic dyes for dye-sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 3103-3112	13	36
97	Probing the kinetics of short-distance drug release from nanocarriers to nanoacceptors. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 8426-30	16.4	35
96	Heterometallic Seed-Mediated Zinc Deposition on Inkjet Printed Silver Nanoparticles Toward Foldable and Heat-Resistant Zinc Batteries. <i>Advanced Functional Materials</i> , 2021 , 31, 2101607	15.6	35
95	Solution processed NiOx hole-transporting material for all-inorganic planar heterojunction Sb2S3 solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2018 , 185, 542-548	6.4	34
94	Site-selective localization of analytes on gold nanorod surface for investigating field enhancement distribution in surface-enhanced Raman scattering. <i>Nanoscale</i> , 2011 , 3, 1575-81	7.7	33
93	Surface functionalization-enhanced spillover effect on hydrogen storage of Ni B nanoalloy-doped activated carbon. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 13663-13668	6.7	33
92	Printable highly catalytic Pt- and TCO-free counter electrode for dye-sensitized solar cells. <i>ACS Applied Materials & Discrete Sensitized Senses</i> (2014), 6, 2224-9	9.5	32

91 Sequential deposition route to efficient Sb2S3 solar cells. *Journal of Materials Chemistry A*, **2018**, 6, 21320-213262.

90	Fluorene-bridged organic dyes with di-anchoring groups for efficient co-adsorbent-free dye-sensitized solar cells. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 7086	7.1	31
89	9.7%-efficient Sb2(S,Se)3 solar cells with a dithieno[3,2-b: 2?,3?-d]pyrrole-cored hole transporting material. <i>Energy and Environmental Science</i> , 2021 , 14, 359-364	35.4	31
88	Pitaya-like microspheres derived from Prussian blue analogues as ultralong-life anodes for lithium storage. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 15041-15048	13	30
87	Three-dimensional spongy framework as superlyophilic, strongly absorbing, and electrocatalytic polysulfide reservoir layer for high-rate and long-cycling lithium-sulfur batteries. <i>Nano Research</i> , 2018 , 11, 6436-6446	10	29
86	Efficient defect passivation of Sb2Se3 film by tellurium doping for high performance solar cells. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 6510-6516	13	27
85	Synthesis and Characterization of Phenothiazine-Based Platinum(II)-Acetylide Photosensitizers for Efficient Dye-Sensitized Solar Cells. <i>Chemistry - A European Journal</i> , 2016 , 22, 3750-7	4.8	25
84	Composition engineering of Sb2S3 film enabling high performance solar cells. <i>Science Bulletin</i> , 2019 , 64, 136-141	10.6	25
83	Panchromatic light harvesting by N719 with a porphyrin molecule for high-performance dye-sensitized solar cells. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 3521	7.1	24
82	CsPbBr Nanocrystal Induced Bilateral Interface Modification for Efficient Planar Perovskite Solar Cells. <i>Advanced Science</i> , 2021 , 8, e2102648	13.6	24
81	van der Waals Epitaxial Growth and Interfacial Passivation of Two-Dimensional Single-Crystalline Few-Layer Gray Arsenic Nanoflakes. <i>Chemistry of Materials</i> , 2019 , 31, 4524-4535	9.6	23
80	Thiocyanate-free ruthenium(II) cyclometalated complexes containing uncommon thiazole and benzothiazole chromophores for dye-sensitized solar cells. <i>Journal of Organometallic Chemistry</i> , 2013 , 748, 75-83	2.3	23
79	Chelation-assisted formation of multi-yolk@hell Co4N@carbon nanoboxes for self-discharge-suppressed high-performance LiBeS2 batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 20302-20309	13	22
78	Regulating Energy Band Alignment via Alkaline Metal Fluoride Assisted Solution Post-Treatment Enabling Sb 2 (S,Se) 3 Solar Cells with 10.7% Efficiency. <i>Advanced Energy Materials</i> ,2103015	21.8	22
77	Water Additive Enhanced Solution Processing of Alloy Sb2(S1⊠Sex)3-Based Solar Cells. <i>Solar Rrl</i> , 2020 , 4, 1900582	7.1	21
76	Investigation on a dopant-free hole transport material for perovskite solar cells. <i>RSC Advances</i> , 2016 , 6, 69365-69369	3.7	21
75	Step-by-Step Mechanism Insights into the TiO2/Ce2S3 S-Scheme Photocatalyst for Enhanced Aniline Production with Water as a Proton Source. <i>ACS Catalysis</i> , 2022 , 12, 164-172	13.1	21
74	Novel D-FA organic sensitizers containing diarylmethylene-bridged triphenylamine and different spacers for solar cell application. <i>Tetrahedron Letters</i> , 2015 , 56, 1233-1238	2	20

73	Direct Hydrothermal Deposition of Antimony Triselenide Films for Efficient Planar Heterojunction Solar Cells. <i>ACS Applied Materials & amp; Interfaces</i> , 2021 , 13, 18856-18864	9.5	20
72	Novel organic dyes based on diarylmethylene-bridged triphenylamine for dye-sensitized solar cells. <i>Synthetic Metals</i> , 2015 , 205, 70-77	3.6	19
71	Molecular engineering of starburst triarylamine donor with selenophene containing Elinker for dye-sensitized solar cells. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 713-726	7.1	19
70	Multivariate Calibration of Near Infrared Spectroscopy in the Presence of Light Scattering Effect: A Comparative Study. <i>Analytical Letters</i> , 2011 , 44, 824-836	2.2	19
69	Solution-Processed in Situ Growth of CuInS2 Nanoparticle Films for Efficient Planar Heterojunction Solar Cells with a Dual Nature of Charge Generation. <i>ACS Applied Energy Materials</i> , 2019 , 2, 5231-5242	6.1	18
68	Perovskite Quantum Dots Exhibiting Strong Hole Extraction Capability for Efficient Inorganic Thin Film Solar Cells. <i>Cell Reports Physical Science</i> , 2020 , 1, 100001	6.1	18
67	Intermetallic SnSb nanodots embedded in carbon nanotubes reinforced nanofabric electrodes with high reversibility and rate capability for flexible Li-ion batteries. <i>Nanoscale</i> , 2019 , 11, 13282-13288	7.7	17
66	All Antimony Chalcogenide Tandem Solar Cell. <i>Solar Rrl</i> , 2020 , 4, 2000048	7.1	17
65	Photostability and Moisture Stability of CH NH PbI -based Solar Cells by Ethyl Cellulose. <i>ChemPlusChem</i> , 2016 , 81, 1292-1298	2.8	17
64	Nitrogen-Doped Nickel Oxide as Hole Transport Layer for High-Efficiency Inverted Planar Perovskite Solar Cells. <i>Solar Rrl</i> , 2019 , 3, 1900164	7.1	16
63	Statistical Modelling and Analysis of the Aerobic Oxidation of Benzyl Alcohol over KMn/C Catalysts. <i>Catalysis Letters</i> , 2009 , 128, 210-220	2.8	16
62	Improving pore filling of gel electrolyte and charge transport in photoanode for high-efficiency quasi-solid-state dye-sensitized solar cells. <i>ACS Applied Materials & Description (Control of the Control of the Contr</i>	9.5	15
61	Macroscopic Orientational Gold Nanorods Monolayer Film with Excellent Photothermal Anticounterfeiting Performance. <i>Advanced Optical Materials</i> , 2020 , 8, 1902082	8.1	14
60	Aqueous-Solution-Based Approach Towards Carbon-Free Sb S Films for High Efficiency Solar Cells. <i>ChemSusChem</i> , 2018 , 11, 3208-3214	8.3	12
59	Cu2NGeS3: a new hole transporting material for stable and efficient perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 19884-19891	13	12
58	Dendrite-Free Anodes Enabled by a Composite of a ZnAl Alloy with a Copper Mesh for High-Performing Aqueous Zinc-Ion Batteries. <i>ACS Applied Materials & Description of the Action Section Sect</i>	8939	12
57	Recent progress and perspectives on Sb2Se3-based photocathodes for solar hydrogen production via photoelectrochemical water splitting. <i>Journal of Energy Chemistry</i> , 2021 , 67, 508-508	12	12
56	Coaxial MnO2Nanoshell/CNFs Composite Film Anode for High-Performance Lithium-Ion Batteries. Journal of the Electrochemical Society, 2018, 165, A487-A492	3.9	11

(2013-2012)

55	Surface-enhanced Raman scattering on silver dendrite with different growth directions. <i>Journal of Raman Spectroscopy</i> , 2012 , 43, 396-404	2.3	11
54	QSAR prediction of HIV inhibition activity of styrylquinoline derivatives by genetic algorithm coupled with multiple linear regressions. <i>Medicinal Chemistry Research</i> , 2012 , 21, 437-443	2.2	11
53	Microcanonical analysis of adsorption of homopolymer chain on a surface. <i>Journal of Chemical Physics</i> , 2009 , 130, 244905	3.9	11
52	Microcanonical analyses of homopolymer aggregation processes. <i>Physical Review E</i> , 2008 , 78, 056101	2.4	11
51	Phosphotungstic Acid Regulated Chemical Bath Deposition of Sb2S3 for High-Efficiency Planar Heterojunction Solar Cell. <i>Energy Technology</i> , 2018 , 6, 2126-2131	3.5	10
50	Efficient Perovskite Solar Cells with Titanium Cathode Interlayer. <i>Solar Rrl</i> , 2018 , 2, 1800167	7.1	9
49	Linear or quadratic plasmon peak sensitivities for individual Au/Ag nanosphere sensors. <i>Sensors and Actuators B: Chemical</i> , 2014 , 203, 812-816	8.5	9
48	Distinctive Deep-Level Defects in Non-Stoichiometric Sb Se Photovoltaic Materials <i>Advanced Science</i> , 2022 , e2105268	13.6	9
47	Bis(phenothiazyl-ethynylene)-Based Organic Dyes Containing Di-Anchoring Groups with Efficiency Comparable to N719 for Dye-Sensitized Solar Cells. <i>Chemistry - an Asian Journal</i> , 2017 , 12, 332-340	4.5	8
46	Functionalized Imidazole-Fused Porphyrin-Donor-Based Dyes: Effect of Linker and Acceptor on Optoelectronic and Photovoltaic Properties. <i>ChemistrySelect</i> , 2018 , 3, 2558-2564	1.8	8
45	Effective improvement of the photovoltaic performance of black dye sensitized quasi-solid-state solar cells. <i>RSC Advances</i> , 2014 , 4, 31759-31763	3.7	8
44	Deep-Level Transient Spectroscopy for Effective Passivator Selection in Perovskite Solar Cells to Attain High Efficiency over 23. <i>ChemSusChem</i> , 2021 , 14, 3182-3189	8.3	8
43	Defect-Resolved Effective Majority Carrier Mobility in Highly Anisotropic Antimony Chalcogenide Thin-Film Solar Cells. <i>Solar Rrl</i> , 2021 , 5, 2000693	7.1	8
42	Sequential Coevaporation and Deposition of Antimony Selenosulfide Thin Film for Efficient Solar Cells. <i>Advanced Materials</i> , 2021 , 33, e2006689	24	8
41	Efficient coaxial n-i-p heterojunction Sb2S3 solar cells. <i>Journal Physics D: Applied Physics</i> , 2021 , 54, 1340	0031	7
40	Sb2S3 Seed-Mediated Growth of Low-Defect Sb2S3 on a TiO2 Substrate for Efficient Solar Cells. <i>ACS Applied Energy Materials</i> , 2020 , 3, 12417-12422	6.1	6
39	Optimizing the photovoltaic performance of thiocyanate-free ruthenium photosensitizers by structural modification of C^N cyclometalating ligand in dye-sensitized solar cells. <i>Polyhedron</i> , 2014 , 82, 71-79	2.7	6
38	Dielectric Nanocup Coating Effect on the Resonant Optical Properties of Individual Au Nanosphere. <i>Plasmonics</i> , 2013 , 8, 1523-1527	2.4	6

37	Probing the Kinetics of Short-Distance Drug Release from Nanocarriers to Nanoacceptors. <i>Angewandte Chemie</i> , 2010 , 122, 8604-8608	3.6	6
36	Probing the trap states in N-i-P Sb(S,Se) solar cells by deep-level transient spectroscopy. <i>Journal of Chemical Physics</i> , 2020 , 153, 124703	3.9	6
35	Solution-Processed Compact Sb2S3 Thin Films by a Facile One-Step Deposition Method for Efficient Solar Cells. <i>Solar Rrl</i> ,2100666	7.1	6
34	Large-Area and Efficient Sky-Blue Perovskite Light-Emitting Diodes via Blade-Coating <i>Advanced Materials</i> , 2022 , e2108939	24	6
33	New Organic Dyes Based on Biarylmethylene-Bridged Triphenylamine for Dye Sensitized Solar Cell. <i>Chinese Journal of Chemistry</i> , 2015 , 33, 925-933	4.9	5
32	Controllable growth and flexible optoelectronic devices of regularly-assembled Bi2S3 semiconductor nanowire bifurcated junctions and crosslinked networks. <i>Nano Research</i> , 2020 , 13, 2226	-2232	5
31	Pulsed laser deposition of antimony selenosulfide thin film for efficient solar cells. <i>Applied Physics Letters</i> , 2020 , 116, 133901	3.4	5
30	Oscillator strengths and integral cross sections for the valence-shell excitations of nitric oxide studied by fast electron impact. <i>Journal of Chemical Physics</i> , 2018 , 148, 044311	3.9	5
29	Ruthenium-Based Photosensitizers for Dye-Sensitized Solar Cells. <i>Green Chemistry and Sustainable Technology</i> , 2015 , 91-114	1.1	5
28	9.6%-Efficient all-inorganic Sb2(S,Se)3 solar cells with a MnS hole-transporting layer. <i>Journal of Materials Chemistry A</i> ,	13	5
27	Aqueous solution processed MoS as an eco-friendly hole-transport layer for all-inorganic SbSe solar cells. <i>Chemical Communications</i> , 2020 , 56, 15173-15176	5.8	5
26	A thiol-amine mixture for metal oxide towards device quality metal chalcogenides. <i>Science China Materials</i> , 2019 , 62, 899-906	7.1	5
25	Efficient Sb2(S,Se)3 Solar Modules Enabled by Hydrothermal Deposition. <i>Solar Rrl</i> , 2021 , 5, 2000750	7.1	5
24	Synthesis of Janus Au@BCP nanoparticles via UV light-initiated RAFT polymerization-induced self-assembly. <i>Nanoscale Advances</i> , 2021 , 3, 347-352	5.1	5
23	Oscillator strengths and integral cross sections of the 🗆 🖾 2?1<- X A excitation of ammonia studied by fast electron impact. <i>Journal of Chemical Physics</i> , 2019 , 150, 064311	3.9	3
22	Dye-sensitized solar cells based on functionalized truxene structure. <i>Chinese Chemical Letters</i> , 2015 , 26, 955-962	8.1	3
21	Organic Chloride Salt Interfacial Modified Crystallization for Efficient Antimony Selenosulfide Solar Cells ACS Applied Materials & amp; Interfaces, 2022,	9.5	3
20	Tuning the Interaction between Ruthenium Single Atoms and the Second Coordination Sphere for Efficient Nitrogen Photofixation. <i>Advanced Functional Materials</i> ,2112452	15.6	3

19	Solution processed AgSbS2 film for efficient planar heterojunction solar cells. <i>Applied Physics Letters</i> , 2021 , 119, 151906	3.4	3
18	Tunable Mie Resonances of Tin-based Iodide Perovskite Islandlike Films with Enhanced Infrared Photoluminescence. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 3332-3338	6.4	3
17	Transparent, High-Performance and Stable Sb S Photoanode Enabled by Heterojunction Engineering with Conjugated Polycarbazole Frameworks for Unbiased Photoelectrochemical Overall Water Splitting Devices <i>Advanced Materials</i> , 2022 , e2200723	24	3
16	Synthesis of tunable-band-gap "Open-Box" halide perovskites by use of anion exchange and internal dissolution procedures. <i>Journal of Colloid and Interface Science</i> , 2016 , 461, 162-167	9.3	2
15	Nanoarray heterojunction and its efficient solar cells without negative impact of photogenerated electric field. <i>Communications Physics</i> , 2021 , 4,	5.4	2
14	Investigations of the valence-shell excitations of molecular ethane by high-energy electron scattering. <i>Journal of Chemical Physics</i> , 2018 , 148, 144313	3.9	1
13	Rational control of anisotropic nanocomposites for engineered nanocatives and SERS application 2010 ,		1
12	Application of the simple model for fd transition to assignment of 4fbd excitation spectra of Yb3+ doped in crystals. <i>Physica Status Solidi (B): Basic Research</i> , 2009 , 246, 1050-1055	1.3	1
11	Elastic Behavior of Polymer Chains. Chinese Journal of Chemical Physics, 2008, 21, 463-468	0.9	1
10	Factors Affecting Polymer Translocation Through a Nanopore in a Membrane. <i>Chinese Journal of Chemical Physics</i> , 2008 , 21, 275-280	0.9	1
9	Gold atom diffusion assisted thermal healing enabling high-performance hole-transporting material in solar cells. <i>Applied Physics Letters</i> , 2021 , 119, 211904	3.4	1
8	Efficient Perovskite Solar Cells with Titanium Cathode Interlayer (Solar RRL 11018). <i>Solar Rrl</i> , 2018 , 2, 1870226	7.1	1
7	Engineering microstructures for efficient Sb2(S \times Se1 \boxtimes)3 solar cells. <i>Journal of Semiconductors</i> , 2021 , 42, 070203	2.3	1
6	Heteroepitaxial and homoepitaxial nucleation strategies to grow Sb2S3 nanorod arrays and therefrom a derived gain of 7.18%-efficient Sb2(S,Se)3 quasi-nanoarray heterojunction solar cells. <i>Applied Materials Today</i> , 2022 , 27, 101487	6.6	1
5	Photophysical characteristics and photosensitizing abilities of thieno[3,2-b]thiophene-Based photosensitizers for photovoltaic and photocatalytic applications. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2021 , 406, 112979	4.7	О
4	An nEl type heterojunction enabling highly efficient carrier separation in inorganic solar cells. <i>Chinese Physics B</i> , 2022 , 31, 038803	1.2	O
3	Intrinsic Trapping and Recombination Dynamics in Low-Dimensional Bismuth Sulfide Nanocrystals. <i>Advanced Materials Interfaces</i> ,2200219	4.6	О
2	Indole-Catalyzed Bromolactonization: Preparation of Bromolactone in Lipophilic Media256-266		

Tuning the Interaction between Ruthenium Single Atoms and the Second Coordination Sphere for Efficient Nitrogen Photofixation (Adv. Funct. Mater. 12/2022). *Advanced Functional Materials*, **2022**, 32, 2270074

15.6