Jun Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4063526/publications.pdf

Version: 2024-02-01

		53789	88628
197	6,562	45	70
papers	citations	h-index	g-index
107	107	107	2012
197	197	197	2812
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Proportional-Integral Observer-Based State Estimation for Markov Memristive Neural Networks With Sensor Saturations. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35, 405-416.	11.3	23
2	Output-Feedback Control for Fuzzy Singularly Perturbed Systems: A Nonhomogeneous Stochastic Communication Protocol Approach. IEEE Transactions on Cybernetics, 2023, 53, 76-87.	9.5	32
3	Proportional–Integral Observer-Based State Estimation for Singularly Perturbed Complex Networks With Cyberattacks. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 9795-9805.	11.3	12
4	Asynchronous Fault Detection for Memristive Neural Networks With Dwell-Time-Based Communication Protocol. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 9004-9015.	11.3	12
5	Fuzzy-Model-Based Control for Singularly Perturbed Systems With Nonhomogeneous Markov Switching: A Dropout Compensation Strategy. IEEE Transactions on Fuzzy Systems, 2022, 30, 530-541.	9.8	60
6	Asynchronous Output Feedback Control of Hidden Semi-Markov Jump Systems With Random Mode-Dependent Delays. IEEE Transactions on Automatic Control, 2022, 67, 4107-4114.	5.7	35
7	SMC for Semi-Markov Jump Cyber-Physical Systems Subject to Randomly Occurring Deception Attacks. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 159-163.	3.0	12
8	Filter for Positive Stochastic Nonlinear Switching Systems With Phase-Type Semi-Markov Parameters and Application. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 2225-2236.	9.3	38
9	A Hierarchical Structure Approach to Finite-Time Filter Design for Fuzzy Markov Switching Systems With Deception Attacks. IEEE Transactions on Cybernetics, 2022, 52, 7254-7264.	9.5	52
10	Event-based asynchronous dissipative filtering for fuzzy nonhomogeneous Markov switching systems with variable packet dropouts. Fuzzy Sets and Systems, 2022, 432, 50-67.	2.7	3
11	Asynchronous <mmi:math altimg="si695.svg" id="d1e730" inline"="" xmins:mmi="http://www.w3.org/1998/Math/Math/Math/Misplay="><mml:msub><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mi>â^ž<td>ททช่:ซกi><!--</td--><td>mial:mrow</td></td></mml:mi></mml:mrow></mml:msub></mmi:math>	ทท ช่:ซ กi> </td <td>mial:mrow</td>	mial:mrow
12	Dissipativity-based synthesis for semi-Markovian systems with simultaneous probabilistic sensors and actuators faults: A modified event-triggered strategy. ISA Transactions, 2022, 128, 255-275.	5.7	6
13	Event-triggered control for exponential stabilization of impulsive dynamical systems. Applied Mathematics and Computation, 2022, 413, 126608.	2.2	4
14	A General Approach to Fixed-Time Synchronization Problem for Fractional-Order Multidimension-Valued Fuzzy Neural Networks Based on Memristor. IEEE Transactions on Fuzzy Systems, 2022, 30, 968-977.	9.8	45
15	Observer-Based Asynchronous Control of Nonlinear Systems With Dynamic Event-Based Try-Once-Discard Protocol. IEEE Transactions on Cybernetics, 2022, 52, 12638-12648.	9.5	35
16	Static Output Feedback Quantized Control for Fuzzy Markovian Switching Singularly Perturbed Systems With Deception Attacks. IEEE Transactions on Fuzzy Systems, 2022, 30, 1036-1047.	9.8	109
17	Fuzzy SMC for Quantized Nonlinear Stochastic Switching Systems With Semi-Markovian Process and Application. IEEE Transactions on Cybernetics, 2022, 52, 9316-9325.	9.5	92
18	Fuzzy Integral Sliding-Mode Control for Nonlinear Semi-Markovian Switching Systems With Application. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 1674-1683.	9.3	73

#	Article	IF	Citations
19	Memory-based event-triggered asynchronous control for semi-Markov switching systems. Applied Mathematics and Computation, 2022, 415, 126694.	2.2	16
20	Ultimate Boundedness Control for Networked Singularly Perturbed Systems With Deception Attacks: A Markovian Communication Protocol Approach. IEEE Transactions on Network Science and Engineering, 2022, 9, 445-456.	6.4	51
21	SMC for phase-type stochastic nonlinear semi-Markov jump systems. Nonlinear Dynamics, 2022, 108, 279-292.	5. 2	6
22	Dissipativity-based resilient reliable sampled-data asynchronous control for interval-valued fuzzy systems with semi-Markovian hybrid fault coefficients. Nonlinear Dynamics, 2022, 107, 2215-2243.	5.2	6
23	Partially Mode-dependent Asynchronous Filtering of T-S Fuzzy MSRSNSs with Parameter Uncertainty. International Journal of Control, Automation and Systems, 2022, 20, 298-309.	2.7	9
24	Nonstationary Filtering for Fuzzy Markov Switching Affine Systems With Quantization Effects and Deception Attacks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 6545-6554.	9.3	28
25	Component-based dynamic event-triggered control for nonlinear singularly perturbed systems: A gain-scheduling method. Information Sciences, 2022, 593, 415-431.	6.9	14
26	Passive analysis and finite-time anti-disturbance control for semi-Markovian jump fuzzy systems with saturation and uncertainty. Applied Mathematics and Computation, 2022, 424, 127030.	2.2	1
27	Security SMC for Networked Fuzzy Singular Systems With Semi-Markov Switching Parameters. IEEE Access, 2022, 10, 45093-45101.	4.2	1
28	Asynchronous filtering of MSRSNSs with the event-triggered try-once-discard protocol and deception attacks. ISA Transactions, 2022, 131, 210-221.	5.7	5
29	Protocol-based filtering for fuzzy Markov affine systems with switching chain. Automatica, 2022, 141, 110321.	5.0	66
30	Peak-to-peak fuzzy filtering of nonlinear discrete-time systems with markov communication protocol. Information Sciences, 2022, 607, 361-376.	6.9	10
31	Protocol-Based Output-Feedback Control for Semi-Markov Jump Systems. IEEE Transactions on Automatic Control, 2022, 67, 4346-4353.	5.7	63
32	Protocol-Based Control for Semi-Markov Jump Systems With Dynamic Quantization. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 4428-4432.	3.0	3
33	Fuzzy Filter Design for Affine Systems with Sensor Faults: A Dynamic Event-Triggered Approach. Journal of Systems Science and Complexity, 2022, 35, 1761-1784.	2.8	3
34	Input–Output Finite-Time Sliding-Mode Control for T–S Fuzzy Systems With Application. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 5446-5455.	9.3	23
35	Asynchronous Output Feedback Control for a Class of Conic-Type Nonlinear Hidden Markov Jump Systems Within a Finite-Time Interval. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 7644-7651.	9.3	81
36	Synchronization for Quantized Semi-Markov Switching Neural Networks in a Finite Time. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32, 1264-1275.	11.3	27

#	Article	IF	Citations
37	Nonstationary Control for T–S Fuzzy Markovian Switching Systems With Variable Quantization Density. IEEE Transactions on Fuzzy Systems, 2021, 29, 1375-1385.	9.8	88
38	A Fuzzy Lyapunov Function Approach to Positive L _l Observer Design for Positive Fuzzy Semi-Markovian Switching Systems With Its Application. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 775-785.	9.3	41
39	Reliable stability and stabilizability for complex-valued memristive neural networks with actuator failures and aperiodic event-triggered sampled-data control. Nonlinear Analysis: Hybrid Systems, 2021, 39, 100977.	3.5	17
40	Asynchronous filtering for nonhomogeneous Markov jumping systems with deception attacks. Applied Mathematics and Computation, 2021, 394, 125790.	2.2	27
41	Resilient asynchronous state estimation of Markov switching neural networks: A hierarchical structure approach. Neural Networks, 2021, 135, 29-37.	5.9	19
42	Resilient controller synthesis for Markovian jump systems with probabilistic faults and gain fluctuations under stochastic sampling operational mechanism. Applied Mathematics and Computation, 2021, 392, 125623.	2.2	3
43	Asynchronous quantized control of Markovian switching Lur'e systems with event-triggered strategy. Journal of the Franklin Institute, 2021, 358, 1984-1998.	3.4	8
44	Security synchronization protocol for IT2 stochastic fuzzy multiplex complex networks via fuzzy hybrid control. ISA Transactions, 2021, 118, 94-105.	5.7	7
45	Nonstationary quantized control for discrete-time Markov jump singularly perturbed systems against deception attacks. Journal of the Franklin Institute, 2021, 358, 2915-2932.	3.4	16
46	Non-fragile <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si4.svg"><mml:msub><mml:mi mathvariant="script">H<mml:mi>â^ž</mml:mi></mml:mi </mml:msub></mml:math> SMC for Markovian jump systems in a finite-time. Journal of the Franklin Institute, 2021, 358, 4721-4740.	3.4	31
47	Robust fuzzy delayed sampled-data control for nonlinear active suspension systems with varying vehicle load and frequency-domain constraint. Nonlinear Dynamics, 2021, 105, 2265-2281.	5.2	15
48	Novel Inequalities to Global Mittag–Leffler Synchronization and Stability Analysis of Fractional-Order Quaternion-Valued Neural Networks. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32, 3700-3709.	11.3	27
49	Stochastic exponential synchronization for delayed neural networks with semi-Markovian switchings: Saturated heterogeneous sampling communication. Nonlinear Analysis: Hybrid Systems, 2021, 41, 101028.	3.5	14
50	A Dynamic Event-Triggered Approach to State Estimation for Switched Memristive Neural Networks With Nonhomogeneous Sojourn Probabilities. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68, 4924-4934.	5 . 4	107
51	Asynchronous Quantized Control for Markov Switching Systems with Channel Fading. Studies in Systems, Decision and Control, 2021, , 241-263.	1.0	1
52	A hidden Markov model based control for periodic systems subject to singular perturbations. Systems and Control Letters, 2021, 157, 105059.	2.3	49
53	Hidden Markov Model-Based Nonfragile State Estimation of Switched Neural Network With Probabilistic Quantized Outputs. IEEE Transactions on Cybernetics, 2020, 50, 1900-1909.	9.5	133
54	Nonstationary <mml:math altimg="si4.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi> </mml:mi><mml:mn>2</mml:mn></mml:msub><mml:nipebreak="goodbreak">â^²<mml:msub><mml:mi> </mml:mi> a^²</mml:msub><filtering 124714.<="" 2020,="" 365,="" and="" applied="" computation,="" for="" markov="" mathematics="" nonlinear="" nonlinearities.="" occurring="" randomly="" repeated="" scalar="" switching="" systems="" td="" with=""><td>no k/mral2mrov</td><td>ν> •/•mml:math</td></filtering></mml:nipebreak="goodbreak"></mml:mrow></mml:math>	no k/mr al2 mrov	ν> •/•mml:math

#	Article	IF	CITATIONS
55	Stability for delayed switched systems with Markov jump parameters and generally incomplete transition rates. Applied Mathematics and Computation, 2020, 365, 124718.	2.2	12
56	Event-driven finite-time control for continuous-time networked switched systems under cyber attacks. Journal of the Franklin Institute, 2020, 357, 11690-11709.	3.4	41
57	A new approach to generalized dissipativity analysis for fuzzy systems with coupling memory sampled-data control. Applied Mathematics and Computation, 2020, 368, 124774.	2.2	6
58	Non-fragile memory filtering of T-S fuzzy delayed neural networks based on switched fuzzy sampled-data control. Fuzzy Sets and Systems, 2020, 394, 40-64.	2.7	233
59	New result on reliable <mml:math altimg="si11.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="bold-script">H</mml:mi><mml:mi>â^ž</mml:mi></mml:msub></mml:math> performance state estimation for memory static neural networks with stochastic sampled-data communication.	2.2	10
60	Finite-time stabilization of Tâ€"S fuzzy semi-Markov switching systems: A coupling memory sampled-data control approach. Journal of the Franklin Institute, 2020, 357, 11265-11280.	3.4	100
61	Asynchronous Partially Mode-Dependent Filtering of Network-Based MSRSNSs With Quantized Measurement. IEEE Transactions on Cybernetics, 2020, 50, 3731-3739.	9.5	28
62	Quantized Nonstationary Filtering of Networked Markov Switching RSNSs: A Multiple Hierarchical Structure Strategy. IEEE Transactions on Automatic Control, 2020, 65, 4816-4823.	5.7	144
63	Quantized Fuzzy Finite-Time Control for Nonlinear Semi-Markov Switching Systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 2622-2626.	3.0	15
64	Design of Hâ^ž state estimator for delayed static neural networks under hybrid-triggered control and imperfect measurement strategy. Journal of the Franklin Institute, 2020, 357, 13231-13257.	3.4	8
65	Local input-to-state stabilization of time-delay systems subject to actuator saturation and external disturbance. Journal of the Franklin Institute, 2020, 357, 4154-4170.	3.4	4
66	Asynchronous dissipative filtering for nonhomogeneous Markov switching neural networks with variable packet dropouts. Neural Networks, 2020, 130, 229-237.	5.9	16
67	Static Output Feedback Control for Fuzzy Systems With Stochastic Fading Channel and Actuator Faults. IEEE Access, 2020, 8, 200714-200723.	4.2	5
68	Finite-time control for Markovian jump systems subject to randomly occurring quantization. Applied Mathematics and Computation, 2020, 385, 125402.	2.2	4
69	SMC for semi-Markov jump T-S fuzzy systems with time delay. Applied Mathematics and Computation, 2020, 374, 125001.	2.2	10
70	Non-fragile observer-based <mml:math altimg="si2.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="bold-script">H</mml:mi><mml:mi>â^ž</mml:mi></mml:msub></mml:math> finite-time sliding mode control. Applied Mathematics and Computation, 2020, 375, 125069.	2.2	4
71	New results on stabilization analysis for fuzzy semi-Markov jump chaotic systems with state quantized sampled-data controller. Information Sciences, 2020, 521, 231-250.	6.9	60
72	A hidden mode observation approach to finite-time SOFC of Markovian switching systems with quantization. Nonlinear Dynamics, 2020, 100, 509-521.	5.2	83

#	Article	IF	Citations
73	A multiple hierarchical structure strategy to quantized control of Markovian switching systems. Applied Mathematics and Computation, 2020, 373, 125037.	2.2	19
74	Hybrid-driven finite-time Hâ^ž sampling synchronization control for coupling memory complex networks with stochastic cyber attacks. Neurocomputing, 2020, 387, 241-254.	5.9	101
75	Extended dissipative asynchronous filtering for T–S fuzzy switched systems with partial transition descriptions and incomplete measurements. Nonlinear Analysis: Hybrid Systems, 2020, 37, 100906.	3.5	11
76	Novel methods to finite-time Mittag-Leffler synchronization problem of fractional-order quaternion-valued neural networks. Information Sciences, 2020, 526, 221-244.	6.9	70
77	Stability and stabilization for positive systems with semi-Markov switching. Applied Mathematics and Computation, 2020, 379, 125252.	2.2	8
78	Decentralized finite-time control for linear interconnected fractional-order systems with input saturation. Journal of the Franklin Institute, 2020, 357, 6137-6153.	3.4	8
79	Adaptive Fuzzy Backstepping-Based Formation Control of Unmanned Surface Vehicles With Unknown Model Nonlinearity and Actuator Saturation. IEEE Transactions on Vehicular Technology, 2020, 69, 14749-14764.	6.3	100
80	Properties of a novel stochastic rock–paper–scissors dynamics. Journal of Applied Mathematics and Computing, 2020, 63, 341-359.	2.5	1
81	Stochastic stability and mml:math xmins:mml= http://www.w3.org/1998/Math/MathML altimg= si1.gif overflow="scroll"> <mml:msub><mml:mrow><mml:mi mathvariant="script"></mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub> <td>ว><!--<b-->ช_ากl:m</td> <td>ath29gain</td>	ว> <b ช _า กl:m	ath29gain
82	Stochastic finite-time Hâ^ž filtering for nonlinear Markovian jump systems with partly known transition probabilities. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering, 2019, 233, 31-43.	1.0	7
83	Static output feedback control of switched systems with quantization: A nonhomogeneous sojourn probability approach. International Journal of Robust and Nonlinear Control, 2019, 29, 5992-6005.	3.7	84
84	Event-triggered passive control for Markovian jump discrete-time systems with incomplete transition probability and unreliable channels. Journal of the Franklin Institute, 2019, 356, 8093-8117.	3.4	26
85	A New Memristive Chaotic System and the Generated Random Sequence. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2019, E102.A, 665-667.	0.3	3
86	Finite-time boundedness of state estimation for semi-Markovian jump systems with distributed leakage delay and linear fractional uncertainties. International Journal of Systems Science, 2019, 50, 2362-2384.	5. 5	7
87	A new result on stability analysis for discrete system with interval time-varying delays. Advances in Difference Equations, 2019, 2019, .	3.5	4
88	Robust finite-time stabilization for positive delayed semi-Markovian switching systems. Applied Mathematics and Computation, 2019, 351, 139-152.	2.2	23
89	Further improved results on non-fragile Hâ^ž performance state estimation for delayed static neural networks. Neurocomputing, 2019, 356, 9-20.	5.9	21
90	Stochastic synchronization of semi-Markovian jump chaotic Lur'e systems with packet dropouts subject to multiple sampling periods. Journal of the Franklin Institute, 2019, 356, 6899-6925.	3.4	14

#	Article	IF	Citations
91	Reachable set estimation for linear systems with time-varying delay and polytopic uncertainties. Journal of the Franklin Institute, 2019, 356, 7322-7346.	3.4	14
92	Stability analysis of fractional-order linear system with time delay described by the Caputo–Fabrizio derivative. Advances in Difference Equations, 2019, 2019, .	3.5	4
93	Decentralized static output feedback sliding mode control for interconnected descriptor systems via linear sliding variable. Applied Mathematics and Computation, 2019, 357, 185-198.	2.2	15
94	Finite-time asynchronous Hâ^ž resilient filtering for switched delayed neural networks with memory unideal measurements. Information Sciences, 2019, 487, 156-175.	6.9	39
95	New Results on Stability Analysis for Delayed Markovian Generalized Neural Networks With Partly Unknown Transition Rates. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30, 3384-3395.	11.3	21
96	Robust Stochastic Sampled-data-based Output Consensus of Heterogeneous Multi-agent Systems Subject to Random DoS Attack: A Markovian Jumping System Approach. International Journal of Control, Automation and Systems, 2019, 17, 1687-1698.	2.7	29
97	Exponential synchronization of delayed memristor-based neural networks with stochastic perturbation via nonlinear control. Neurocomputing, 2019, 340, 90-98.	5.9	10
98	Stability Analysis of a Fractional-Order Linear System Described by the Caputo–Fabrizio Derivative. Mathematics, 2019, 7, 200.	2.2	38
99	\$H_{infty}\$ control for T-S fuzzy systems with aperiodic sampling. , 2019, , .		0
100	The passivity of neural networks with time-varying delay. , 2019, , .		0
101	New reliable nonuniform sampling control for uncertain chaotic neural networks under Markov switching topologies. Applied Mathematics and Computation, 2019, 347, 169-193.	2.2	120
102	Extended dissipative resilient estimator design for discrete-time switched neural networks with unreliable links. Nonlinear Analysis: Hybrid Systems, 2019, 32, 19-36.	3.5	20
103	<pre><mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="script">L</mml:mi><mml:mn>1</mml:mn></mml:msub></mml:math>finite-time stabilization for positive semi-Markovian switching systems. Information Sciences, 2019, 477, 321-333.</pre>	6.9	18
104	An extended synchronization analysis for memristor-based coupled neural networks via aperiodically intermittent control. Applied Mathematics and Computation, 2019, 344-345, 163-182.	2.2	10
105	Finite-time synchronization control for semi-Markov jump neural networks with mode-dependent stochastic parametric uncertainties. Applied Mathematics and Computation, 2019, 344-345, 230-242.	2.2	27
106	Nonfragile <mml:math altimg="si2.gif" display="inline" id="d1e686" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi mathvariant="script">H</mml:mi></mml:mrow><mml:mrow><mml:mi>â^ž</mml:mi></mml:mrow><td>><i><∱</i>mml:m</td><td>ath>control</td></mml:msub></mml:math>	> <i><∱</i> mml:m	ath>control
107	Anti-Windup Design for Saturated Semi-Markovian Switching Systems With Stochastic Disturbance. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66, 1187-1191.	3.0	32
108	New Stability Criteria of Discrete Systems With Time-Varying Delays. IEEE Access, 2019, 7, 1677-1684.	4.2	9

#	Article	IF	Citations
109	An Event-Based Asynchronous Approach to Markov Jump Systems With Hidden Mode Detections and Missing Measurements. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49, 1749-1758.	9.3	144
110	A flexible terminal approach to stochastic stability and stabilization of continuous-time semi-Markovian jump systems with time-varying delay. Applied Mathematics and Computation, 2019, 342, 191-205.	2.2	24
111	Extended robust global exponential stability for uncertain switched memristor-based neural networks with time-varying delays. Applied Mathematics and Computation, 2018, 325, 271-290.	2.2	32
112	Fuzzy-model-based Hâ^ž control for discrete-time switched systems with quantized feedback and unreliable links. Information Sciences, 2018, 436-437, 181-196.	6.9	45
113	Simultaneous Finite-Time Control and Fault Detection for Singular Markovian Jump Delay Systems with Average Dwell Time Constraint. Circuits, Systems, and Signal Processing, 2018, 37, 5279-5310.	2.0	10
114	Finite-time event-triggered control and fault detection for singular Markovian jump mixed delay systems under asynchronous switching. Advances in Difference Equations, 2018, 2018, .	3.5	3
115	An Asynchronous Operation Approach to Event-Triggered Control for Fuzzy Markovian Jump Systems With General Switching Policies. IEEE Transactions on Fuzzy Systems, 2018, 26, 6-18.	9.8	234
116	Stochastic permanence of two impulsive stochastic delay single species systems incorporating predation term. Journal of Applied Mathematics and Computing, 2018, 56, 691-713.	2.5	6
117	Holistic adjustable delay interval method-based stability and generalized dissipativity analysis for delayed recurrent neural networks. Neurocomputing, 2018, 275, 488-498.	5.9	2
118	Exponential stability and <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="bold-script">L</mml:mi><mml:mn>1</mml:mn></mml:msub></mml:math> -gain analysis for positive time-delay Markovian jump systems with switching transition rates subject to average dwell time. Information Sciences, 2018, 424, 224-234.	6.9	63
119	Novel inequality with application to improve the stability criterion for dynamical systems with two additive time-varying delays. Applied Mathematics and Computation, 2018, 321, 672-688.	2.2	38
120	A Flexible Terminal Approach to Sampled-Data Exponentially Synchronization of Markovian Neural Networks With Time-Varying Delayed Signals. IEEE Transactions on Cybernetics, 2018, 48, 2232-2244.	9.5	162
121	Extended dissipative estimator design for uncertain switched delayed neural networks via a novel triple integral inequality. Applied Mathematics and Computation, 2018, 335, 82-102.	2.2	17
122	Fuzzy model-based nonfragile control of switched discrete-time systems. Nonlinear Dynamics, 2018, 93, 2461-2471.	5.2	50
123	Further Results on Reachable Set Bounding for Discrete-Time System with Time-Varying Delay and Bounded Disturbance Inputs. Complexity, 2018, 2018, 1-11.	1.6	О
124	Quantized <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="bold-script">H</mml:mi><mml:mi>â^ž</mml:mi></mml:msub></mml:math> filtering for switched linear parameter-varying systems with sojourn probabilities and unreliable communication	6.9	106
125	channels. Information Sciences, 2018, 466, 289-302. Synchronization of stochastic complex networks with discrete-time and distributed coupling delayed via hybrid nonlinear and impulsive control. Chaos, Solitons and Fractals, 2018, 114, 381-393.	5.1	11
126	Sampledâ€data synchronisation for memristive neural networks with multiple timeâ€varying delays via extended convex combination method. IET Control Theory and Applications, 2018, 12, 922-932.	2.1	9

#	ARTICLE Robust < mmi:math xmins:mmi="http://www.w3.org/1998/iviath/iviathiviL" aitimg="si1.gif"	IF	Citations
127	overflow="scroll"> <mml:msub><mml:mi><mml:mi>â^ž</mml:mi></mml:mi></mml:msub> control for nonhomogeneous Markovian jump systems subject to quantized feedback and probabilistic	3.4	28
128	Synchronization of multi-stochastic-link complex networks via aperiodically intermittent control with two different switched periods. Physica A: Statistical Mechanics and Its Applications, 2018, 509, 20-38.	2.6	11
129	Finite-time <mml:math altimg="si1.gif" overflow="scroll" xmins:mml="http://www.w3.org/1998/iviath/iviathiviL"><mml:msub><mml:mrow><mml:mi mathvariant="script">H</mml:mi></mml:mrow><mml:mrow><mml:mo>â^ž</mml:mo></mml:mrow></mml:msub><td>>2./mml:m</td><td>ath3</td></mml:math>	> 2./ mml:m	ath3
130	Cluster synchronization of linearly coupled complex networks via linear and adaptive feedback pinning controls. Nonlinear Dynamics, 2017, 88, 859-870.	5.2	40
131	Static output feedback control of nonhomogeneous Markovian jump systems with asynchronous time delays. Information Sciences, 2017, 399, 219-238.	6.9	120
132	Exponential synchronization of memristor-based neural networks with time-varying delay and stochastic perturbation. Neurocomputing, 2017, 242, 131-139.	5.9	28
133	New results on H â^ž filtering for Markov jump systems with uncertain transition rates. ISA Transactions, 2017, 69, 43-50.	5.7	19
134	Robust stabilisation for nonâ€linear timeâ€delay semiâ€Markovian jump systems via sliding mode control. IET Control Theory and Applications, 2017, 11, 1504-1513.	2.1	84
135	A mismatched membership function approach to sampled-data stabilization for T-S fuzzy systems with time-varying delayed signals. Signal Processing, 2017, 140, 161-170.	3.7	82
136	Further results on stability analysis for discrete-time T-S fuzzy stochastic systems subject to time-varying delayed signals. , 2017, , .		1
137	New criteria of stability analysis for generalized neural networks subject to time-varying delayed signals. Applied Mathematics and Computation, 2017, 314, 322-333.	2.2	52
138	A sojourn probability approach to fuzzy-model-based reliable control for switched systems with mode-dependent time-varying delays. Nonlinear Analysis: Hybrid Systems, 2017, 26, 239-253.	3.5	38
139	Event-triggered reliable control for Markovian jump systems subject to nonuniform sampled data. Journal of the Franklin Institute, 2017, 354, 5877-5894.	3.4	9
140	Anti-windup design for stochastic Markovian switching systems with mode-dependent time-varying delays and saturation nonlinearity. Nonlinear Analysis: Hybrid Systems, 2017, 26, 201-211.	3.5	43
141	State of charge estimation of lithium-ion batteries using fractional order sliding mode observer. ISA Transactions, 2017, 66, 448-459.	5.7	54
142	Event-triggered reliable control for fuzzy Markovian jump systems with mismatched membership functions. ISA Transactions, 2017, 66, 96-104.	5.7	28
143	Sampledâ€data reliable control for T–S fuzzy semiâ€Markovian jump system and its application to singleâ€ink robot arm model. IET Control Theory and Applications, 2017, 11, 1904-1912.	2.1	52
144	Improved conditions for neutral delay systems with novel inequalities. Journal of Nonlinear Science and Applications, 2017, 10, 2309-2317.	1.0	12

#	Article	IF	CITATIONS
145	Robust finite-time event-triggered H â^ž boundedness for network-based Markovian jump nonlinear systems. ISA Transactions, 2016, 63, 32-38.	5.7	20
146	(m,N)-delay-partitioning approach to stability analysis for T-S fuzzy systems with interval time-varying delay. International Journal of Control, Automation and Systems, 2016, 14, 367-377.	2.7	4
147	Function projective synchronization of complex networks with asymmetric coupling via adaptive and pinning feedback control. ISA Transactions, 2016, 65, 81-87.	5.7	27
148	Event-triggered <mml:math altimg="si0001.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="script">H</mml:mi></mml:mrow></mml:math> â^ž control for T–S fuzzy nonlinear systems and its application to truck–trailer system. ISA Transactions, 2016, 65, 62-71.	5.7	35
149	Synchronization of complex networks with non-delayed and delayed couplings via adaptive feedback and impulsive pinning control. Nonlinear Dynamics, 2016, 86, 165-176.	5.2	29
150	On extended dissipativity analysis for neural networks with time-varying delay and general activation functions. Advances in Difference Equations, 2016, 2016, .	3.5	7
151	Robust finite-time boundedness of <i>H</i> _{<i>â^ž</i>} filtering for switched systems with time-varying delay. Optimal Control Applications and Methods, 2016, 37, 259-278.	2.1	26
152	Finite-time stability for discrete-time system with time-varying delay and nonlinear perturbations. ISA Transactions, 2016, 60, 67-73.	5.7	49
153	Robust finite-time sampled-data control of linear systems subject to random occurring delays and its application to Four-Tank system. Applied Mathematics and Computation, 2016, 281, 55-76.	2.2	42
154	Synchronization for time-varying complex networks based on control. Journal of Computational and Applied Mathematics, 2016, 301, 178-187.	2.0	36
155	Perturbed dynamics of discrete-time switched nonlinear systems with delays and uncertainties. ISA Transactions, 2016, 62, 129-136.	5.7	5
156	State estimation for uncertain Markovian jump neural networks with mixed delays. Neurocomputing, 2016, 182, 82-93.	5.9	15
157	Finite-time stochastic contractive boundedness of Markovian jump systems subject to input constraints. ISA Transactions, 2016, 60, 74-81.	5.7	34
158	Relaxed passivity conditions for discrete-time stochastic delayed neural networks. International Journal of Machine Learning and Cybernetics, 2016, 7, 205-216.	3.6	8
159	Finite-time stochastic boundedness of discrete-time Markovian jump neural networks with boundary transition probabilities and randomly varying nonlinearities. Neurocomputing, 2016, 174, 773-779.	5.9	10
160	Robust delay-derivative-dependent state-feedback control for a class of continuous-time system with time-varying delays. Neurocomputing, 2016, 173, 827-834.	5.9	16
161	New passivity criteria for uncertain neural networks with time-varying delay. Neurocomputing, 2016, 171, 1003-1012.	5.9	29
162	Improved results on reachable set bounding for linear systems with discrete and distributed delays. Advances in Difference Equations, 2015, 2015, .	3.5	4

#	Article	IF	Citations
163	Analysis and Synthesis of Stochastic Nonlinear Systems. Mathematical Problems in Engineering, 2015, 2015, 1-2.	1.1	O
164	Finite-Time <mml:math id="M1" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>H</mml:mi><mml:mi>a^ž</mml:mi></mml:msub></mml:mrow><td>nml:math</td><td>>Filtering</td></mml:math>	nml:math	>Filtering
165	Finite-Time Boundedness of Markov Jump System with Piecewise-Constant Transition Probabilities via Dynamic Output Feedback Control. Mathematical Problems in Engineering, 2015, 2015, 1-10.	1.1	2
166	New Results on Passivity for Discrete-Time Stochastic Neural Networks with Time-Varying Delays. Mathematical Problems in Engineering, 2015, 2015, 1-10.	1,1	0
167	Delay-dependent finite-time boundedness of a class of Markovian switching neural networks with time-varying delays. ISA Transactions, 2015, 57, 43-50.	5.7	18
168	Improved integral inequality approach on stabilization for continuous-time systems with time-varying input delay. Neurocomputing, 2015, 160, 274-280.	5.9	30
169	Further improved stability criteria for uncertain T–S fuzzy systems with interval time-varying delay by delay-partitioning approach. ISA Transactions, 2015, 58, 27-34.	5.7	32
170	H â^ž \$H_{infty}\$ State estimation for discrete-time neural networks with time-varying and distributed delays. Advances in Difference Equations, 2015, 2015, yet systems with time-varying delay by	3.5	4
171	<pre><mml:math <="" altimg="si0026.gif" overflow="scroll" pre="" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"></mml:math></pre>	5.7	18
172	Finite-time filtering for switched linear systems with a mode-dependent average dwell time. Nonlinear Analysis: Hybrid Systems, 2015, 15, 145-156.	3.5	84
173	Finite-time <i>H</i> _{â^ž} control for a class of discrete-time Markovian jump systems with partly unknown time-varying transition probabilities subject to average dwell time switching. International Journal of Systems Science, 2015, 46, 1080-1093.	5.5	51
174	Finite-time <mml:math altimg="si4.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mmlemsub><mm< td=""><td>nl:mi>â^ž<, 3.3</td><td>/mml:mi>69</td></mm<></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mmlemsub></mml:mrow></mml:mrow></mml:mrow></mml:math>	nl:mi>â^ž<, 3.3	/mml:mi>69
175	20, 571-582. Further improvement in delay-dependent stability criteria for continuous-time systems with time-varying delays. Neurocomputing, 2015, 147, 324-329.	5.9	15
176	Stochastic finite-time boundedness for Markovian jumping neural networks with time-varying delays. Applied Mathematics and Computation, 2014, 242, 281-295.	2.2	52
177	Finite-time bounded of H <inf>∞</inf> predictor-based controller subject to input-delay systems. , 2014, , .		0
178	Robust finite-time bounded H<inf>& $\#x221E$;</inf> control for a class of nonlinear quadratic Markovian jump systems. , 2014, , .		0
179	Finite-time boundedness of a class of discrete-time Markovian jump systems with piecewise-constant transition probabilities subject to average dwell time switching. Canadian Journal of Physics, 2014, 92, 93-102.	1.1	5
180	Finite-time boundedness of state estimation for neural networks with time-varying delays. Neurocomputing, 2014, 129, 257-264.	5.9	68

#	Article	IF	CITATIONS
181	Exponential stability for stochastic Cohen–Grossberg BAM neural networks with discrete and distributed time-varying delays. Neurocomputing, 2014, 127, 144-151.	5.9	26
182	Finiteâ€ŧime <i>H</i> _{â^žâ€‰} filtering for a class of discreteâ€ŧime Markovian jump systems wit partly unknown transition probabilities. International Journal of Adaptive Control and Signal Processing, 2014, 28, 1024-1042.	th 4.1	25
183	Improved delay-dependent stability criteria for continuous system with two additive time-varying delay components. Communications in Nonlinear Science and Numerical Simulation, 2014, 19, 210-215.	3.3	26
184	${\rm H\^{a}\^{z}}$ filtering for a class of discrete-time singular Markovian jump systems with time-varying delays. ISA Transactions, 2014, 53, 1054-1060.	5.7	72
185	Robust delay-probability-distribution-dependent stability of uncertain stochastic genetic regulatory networks with random discrete delays and distributed delays. International Journal of Robust and Nonlinear Control, 2014, 24, 2574-2596.	3.7	34
186	Finite-time Hâ^ž control of a switched discrete-time system with average dwell time. Advances in Difference Equations, 2013, 2013, 191.	3.5	7
187	Finite-time filtering for a class of discrete-time Markovian jump systems with switching transition probabilities subject to average dwell time switching. Applied Mathematics and Computation, 2013, 225, 278-294.	2.2	33
188	Finite-time Hâ^ž control for a class of Markovian jump systems with mode-dependent time-varying delays via new Lyapunov functionals. ISA Transactions, 2013, 52, 768-774.	5.7	123
189	H <inf>&$\#x221E$;</inf> filtering of discrete-time switched systems with average dwell time under asynchronous switching. , 2013, , .		0
190	Finite-time H $\hat{a}\hat{z}$ control for a class of Markovian jump systems with mode-dependent time-varying delay. Advances in Difference Equations, 2013, 2013, .	3.5	5
191	Novel delay-dependent robust stability criteria for neutral systems with mixed time-varying delays and nonlinear perturbations. Applied Mathematics and Computation, 2013, 219, 7741-7753.	2.2	61
192	Finite-Time Stabilization of H â^ž Filtering for Switched Stochastic Systems. Circuits, Systems, and Signal Processing, 2013, 32, 1595-1613.	2.0	7
193	Delay-Dependent Finite-Time <mml:math id="M1" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub>H<mml:mi>â^ž</mml:mi></mml:msub></mml:mrow><th>ml:math></th><th>Filtering</th></mml:math>	ml:math>	Filtering
194	Finite-time Hâ^ž filtering for discrete-time Markovian jump systems with partly unknown transition probabilities. Canadian Journal of Physics, 2013, 91, 1020-1028.	1.1	6
195	Robust Stability of Switched Delay Systems with Average Dwell Time under Asynchronous Switching. Journal of Applied Mathematics, 2012, 2012, 1-17.	0.9	8
196	Finite-time boundness of H \hat{a} filtering for switching discrete-time systems. International Journal of Control, Automation and Systems, 2012, 10, 1129-1135.	2.7	10
197	Robust H _{â^ž} Filtering for Stochastic Networked Control System with Nonlinearities and Missing Measurements. Advanced Materials Research, 0, 503-504, 1458-1462.	0.3	O