Kumiko Yoshihara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4063451/publications.pdf

Version: 2024-02-01

76 papers

4,290 citations

172457 29 h-index 110387 64 g-index

76 all docs

76 docs citations

76 times ranked 3036 citing authors

#	Article	IF	Citations
1	Antimicrobial adhesive polyurethane gel sheet with cetylpyridinium chloride-montmorillonite for facial and somato prosthesis fastening. Journal of Prosthodontic Research, 2023, 67, 180-188.	2.8	3
2	Effect of Airâ€Particle Abrasion Protocol and Primer on The Topography and Bond Strength of a Highâ€Translucent Zirconia Ceramic. Journal of Prosthodontics, 2022, 31, 228-238.	3.7	15
3	Kinematic characteristics during gait in frail older women identified by principal component analysis. Scientific Reports, 2022, 12, 1676.	3.3	11
4	Novel composite cement containing the anti-microbial compound CPC-Montmorillonite. Dental Materials, 2022, 38, 33-43.	3.5	7
5	Preliminary Study on the Optimization of Femtosecond Laser Treatment on the Surface Morphology of Lithium Disilicate Glass-Ceramics and Highly Translucent Zirconia Ceramics. Materials, 2022, 15, 3614.	2.9	2
6	Ultrahigh Thermoresistant Lightweight Bioplastics Developed from Fermentation Products of Cellulosic Feedstock. Advanced Sustainable Systems, 2021, 5, 2000193.	5. 3	16
7	Impact of sandblasting on the flexural strength of highly translucent zirconia. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 115, 104268.	3.1	39
8	Initial curing characteristics of composite cements under ceramic restorations. Journal of Prosthodontic Research, 2021, 65, 39-45.	2.8	13
9	Antibacterial Effect of Amino Acid–Silver Complex Loaded Montmorillonite Incorporated in Dental Acrylic Resin. Materials, 2021, 14, 1442.	2.9	4
10	Phosphate group adsorption capacity of inorganic elements affects bond strength between CAD/CAM composite block and luting agent. Dental Materials Journal, 2021, 40, 288-296.	1.8	4
11	Optimizing glass-ceramic bonding incorporating new silane technology in an experimental universal adhesive formulation. Dental Materials, 2021, 37, 894-904.	3.5	9
12	Development of new diacrylate monomers as substitutes for Bis-GMA and UDMA. Dental Materials, 2021, 37, e391-e398.	3.5	16
13	Experimental resin-modified calcium-silicate cement containing N-(2-hydroxyethyl) acrylamide monomer for pulp tissue engineering. Materials Science and Engineering C, 2021, 126, 112105.	7.3	2
14	Development of 4-META/MMA-TBB resin with added benzalkonium chloride or cetylpyridinium chloride as antimicrobial restorative materials for root caries. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 124, 104838.	3.1	3
15	Quick bonding using a universal adhesive. Clinical Oral Investigations, 2020, 24, 2837-2851.	3.0	29
16	Flexural properties, bond ability, and crystallographic phase of highly translucent multi-layered zirconia. Journal of Applied Biomaterials and Functional Materials, 2020, 18, 228080002094271.	1.6	4
17	Contemporary restorative ion-releasing materials: current status, interfacial properties and operative approaches. British Dental Journal, 2020, 229, 450-458.	0.6	23
18	Flexural Strength of Resin Core Build-Up Materials: Correlation to Root Dentin Shear Bond Strength and Pull-Out Force. Polymers, 2020, 12, 2947.	4.5	7

#	Article	IF	Citations
19	Silane-coupling effect of a silane-containing self-adhesive composite cement. Dental Materials, 2020, 36, 914-926.	3.5	26
20	Development of self-adhesive pulp-capping agents containing a novel hydrophilic and highly polymerizable acrylamide monomer. Journal of Materials Chemistry B, 2020, 8, 5320-5329.	5.8	6
21	Cytotoxicity and Bioactivity of Dental Pulp-Capping Agents towards Human Tooth-Pulp Cells: A Systematic Review of In-Vitro Studies and Meta-Analysis of Randomized and Controlled Clinical Trials. Materials, 2020, 13, 2670.	2.9	46
22	Three-dimensional observation and analysis of remineralization in dentinal caries lesions. Scientific Reports, 2020, 10, 4387.	3.3	17
23	Injectable phosphopullulan-functionalized calcium-silicate cement for pulp-tissue engineering: An in-vivo and ex-vivo study. Dental Materials, 2020, 36, 512-526.	3.5	17
24	From Buonocore's Pioneering Acid-Etch Technique to Self-Adhering Restoratives. A Status Perspective of Rapidly Advancing Dental Adhesive Technology. Journal of Adhesive Dentistry, 2020, 22, 7-34.	0.5	125
25	Atomic level observation and structural analysis of phosphoric-acid ester interaction at dentin. Acta Biomaterialia, 2019, 97, 544-556.	8.3	29
26	Bonding to enamel using alternative Enamel Conditioner/etchants. Dental Materials, 2019, 35, 1415-1429.	3.5	19
27	Rechargeable anti-microbial adhesive formulation containing cetylpyridinium chloride montmorillonite. Acta Biomaterialia, 2019, 100, 388-397.	8.3	31
28	Survival of human dental pulp cells after 4-week culture in human tooth model. Journal of Dentistry, 2019, 86, 33-40.	4.1	15
29	Ultrastructure and bonding properties of tribochemical silica-coated zirconia. Dental Materials Journal, 2019, 38, 107-113.	1.8	24
30	Do Universal Adhesives Benefit from an Extra Bonding Layer?. Journal of Adhesive Dentistry, 2019, 21, 117-132.	0.5	24
31	Degradation of Adhesive-Dentin Interfaces Created Using Different Bonding Strategies after Five-year Simulated Pulpal Pressure. Journal of Adhesive Dentistry, 2019, 21, 199-207.	0.5	21
32	Crystallographic and morphological analysis of sandblasted highly translucent dental zirconia. Dental Materials, 2018, 34, 508-518.	3.5	112
33	Chemical interaction of glycero-phosphate dimethacrylate (GPDM) with hydroxyapatite and dentin. Dental Materials, 2018, 34, 1072-1081.	3.5	50
34	Etching Efficacy of Self-Etching Functional Monomers. Journal of Dental Research, 2018, 97, 1010-1016.	5.2	75
35	Freshly-mixed and setting calcium-silicate cements stimulate human dental pulp cells. Dental Materials, 2018, 34, 797-808.	3.5	40
36	Light irradiance through novel CAD–CAM block materials and degree of conversion of composite cements. Dental Materials, 2018, 34, 296-305.	3.5	31

#	Article	IF	CITATIONS
37	Dental Resin., 2018, , 179-193.		O
38	Modified tricalcium silicate cement formulations with added zirconium oxide. Clinical Oral Investigations, 2017, 21, 895-905.	3.0	30
39	Sandblasting may damage the surface of composite CAD–CAM blocks. Dental Materials, 2017, 33, e124-e135.	3.5	93
40	Re-mineralizing dentin using an experimental tricalcium silicate cement with biomimetic analogs. Dental Materials, 2017, 33, 505-513.	3.5	8
41	Caffeic acid production by simultaneous saccharification and fermentation of kraft pulp using recombinant Escherichia coli. Applied Microbiology and Biotechnology, 2017, 101, 5279-5290.	3.6	34
42	Titanium implant functionalization with phosphateâ€containing polymers may favour in vivo osseointegration. Journal of Clinical Periodontology, 2017, 44, 950-960.	4.9	8
43	Bacterial adhesion not inhibited by ion-releasing bioactive glass filler. Dental Materials, 2017, 33, 723-734.	3.5	41
44	Chemical interaction mechanism of 10-MDP with zirconia. Scientific Reports, 2017, 7, 45563.	3.3	144
45	No evidence for the growth-stimulating effect of monomers on cariogenic Streptococci. Clinical Oral Investigations, 2017, 21, 1861-1869.	3.0	7
46	Does 8-methacryloxyoctyl trimethoxy silane (8-MOTS) improve initial bond strength on lithium disilicate glass ceramic?. Dental Materials, 2017, 33, e95-e100.	3.5	23
47	Does Acid Etching Morphologically and Chemically Affect Lithium Disilicate Glass Ceramic Surfaces?. Journal of Applied Biomaterials and Functional Materials, 2017, 15, 93-100.	1.6	10
48	Phosphorylated Pullulan Coating Enhances Titanium Implant Osseointegration in a Pig Model. International Journal of Oral and Maxillofacial Implants, 2017, 32, 282-290.	1.4	8
49	Micro-Raman Vibrational Identification of 10-MDP Bond to Zirconia and Shear Bond Strength Analysis. BioMed Research International, 2017, 2017, 1-7.	1.9	6
50	Interference of functional monomers with polymerization efficiency of adhesives. European Journal of Oral Sciences, 2016, 124, 204-209.	1.5	33
51	Effectiveness and stability of silane coupling agent incorporated in †universal†adhesives. Dental Materials, 2016, 32, 1218-1225.	3.5	156
52	Various Effects of Sandblasting of Dental Restorative Materials. PLoS ONE, 2016, 11, e0147077.	2.5	19
53	Bone engineering by phosphorylated-pullulan and \hat{l}^2 -TCP composite. Biomedical Materials (Bristol), 2015, 10, 065009.	3.3	22
54	Flexural properties of polyethylene, glass and carbon fiber-reinforced resin composites for prosthetic frameworks. Acta Odontologica Scandinavica, 2015, 73, 581-587.	1.6	24

#	Article	lF	CITATIONS
55	Functional monomer impurity affects adhesive performance. Dental Materials, 2015, 31, 1493-1501.	3.5	83
56	Ultra-structural evaluation of an anodic oxidated titanium dental implant. Dental Materials Journal, 2014, 33, 828-834.	1.8	7
57	Impact of hydrophilicity and length of spacer chains on the bonding of functional monomers. Dental Materials, 2014, 30, e317-e323.	3.5	65
58	Can the Hydrophilicity of Functional Monomers Affect Chemical Interaction?. Journal of Dental Research, 2014, 93, 201-206.	5.2	68
59	Bonding in Dentistry. , 2014, , 1-56.		0
60	Adhesive interfacial interaction affected by different carbon-chain monomers. Dental Materials, 2013, 29, 888-897.	3.5	83
61	Should we be concerned about composite (nano-)dust?. Dental Materials, 2012, 28, 1162-1170.	3.5	48
62	Self-assembled Nano-layering at the Adhesive Interface. Journal of Dental Research, 2012, 91, 376-381.	5.2	284
63	HEMA Inhibits Interfacial Nano-layering of the Functional Monomer MDP. Journal of Dental Research, 2012, 91, 1060-1065.	5.2	107
64	X-ray diffraction analysis of three-dimensional self-reinforcing monomer and its chemical interaction with tooth and hydroxyapatite. Dental Materials Journal, 2012, 31, 697-702.	1.8	15
65	Osteoblast compatibility of materials depends on serum protein absorbability in osteogenesis. Dental Materials Journal, 2012, 31, 674-680.	1.8	2
66	Effects of functional monomers and photo-initiators on the degree of conversion of a dental adhesive. Acta Biomaterialia, 2012, 8, 1928-1934.	8.3	61
67	Self-etch Monomer-Calcium Salt Deposition on Dentin. Journal of Dental Research, 2011, 90, 602-606.	5.2	93
68	State of the art of self-etch adhesives. Dental Materials, 2011, 27, 17-28.	3.5	1,001
69	How much do resin-based dental materials release? A meta-analytical approach. Dental Materials, 2011, 27, 723-747.	3.5	345
70	Nanolayering of phosphoric acid ester monomer on enamel and dentin. Acta Biomaterialia, 2011, 7, 3187-3195.	8.3	168
71	Nano-controlled molecular interaction at adhesive interfaces for hard tissue reconstruction. Acta Biomaterialia, 2010, 6, 3573-3582.	8.3	208
72	Crystal Structure Analysis of Multiwalled Carbon Nanotube Forests by Newly Developed Cross-Sectional X-ray Diffraction Measurement. Applied Physics Express, 2010, 3, 105101.	2.4	15

#	Article	IF	CITATIONS
73	Hydrogen Interaction with Single-Walled Carbon Nanotubes. Applied Physics Express, 2008, 1, 094001.	2.4	1
74	Ultrasonic cleaning of silica-coated zirconia influences bond strength between zirconia and resin luting material. Dental Materials Journal, 2008, 27, 842-848.	1.8	36
75	High-Density Growth of Vertically Aligned Carbon Nanotubes with High Linearity by Catalyst Preheating in Acetylene Atmosphere. Japanese Journal of Applied Physics, 2008, 47, 1941-1943.	1.5	8
76	Fabrication of screen-printed field electron emitter using length-controlled and purification-free carbon nanotubes. Applied Physics Letters, 2007, 91, .	3.3	11