Snehashis Choudhury

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4063368/publications.pdf

Version: 2024-02-01

47 papers 7,359 citations

34 h-index 253896 43 g-index

49 all docs

49 docs citations

49 times ranked 7422 citing authors

#	Article	IF	CITATIONS
1	Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nature Energy, $2016, 1, .$	19.8	1,339
2	Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nature Energy, 2020, 5, 526-533.	19.8	642
3	Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries. Nature, 2018, 560, 345-349.	13.7	586
4	A stable room-temperature sodium–sulfur battery. Nature Communications, 2016, 7, 11722.	5.8	459
5	Fast ion transport at solid–solid interfaces in hybrid battery anodes. Nature Energy, 2018, 3, 310-316.	19.8	413
6	A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles. Nature Communications, 2015, 6, 10101.	5.8	386
7	Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries. Chemical Society Reviews, 2020, 49, 2701-2750.	18.7	310
8	Designing solid-liquid interphases for sodium batteries. Nature Communications, 2017, 8, 898.	5.8	303
9	Lithium Fluoride Additives for Stable Cycling of Lithium Batteries at High Current Densities. Advanced Electronic Materials, 2016, 2, 1500246.	2.6	284
10	Highly Stable Sodium Batteries Enabled by Functional Ionic Polymer Membranes. Advanced Materials, 2017, 29, 1605512.	11.1	214
11	Designing Artificial Solid-Electrolyte Interphases for Single-Ion and High-Efficiency Transport in Batteries. Joule, 2017, 1, 394-406.	11.7	202
12	Building Organic/Inorganic Hybrid Interphases for Fast Interfacial Transport in Rechargeable Metal Batteries. Angewandte Chemie - International Edition, 2018, 57, 992-996.	7. 2	178
13	Nucleation and Early Stage Growth of Li Electrodeposits. Nano Letters, 2019, 19, 8191-8200.	4.5	159
14	Design Principles of Functional Polymer Separators for Highâ€Energy, Metalâ€Based Batteries. Small, 2018, 14, e1703001.	5.2	155
15	Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport. Angewandte Chemie - International Edition, 2017, 56, 13070-13077.	7.2	151
16	Electrochemical Interphases for High-Energy Storage Using Reactive Metal Anodes. Accounts of Chemical Research, 2018, 51, 80-88.	7.6	145
17	Electrolytic vascular systems for energy-dense robots. Nature, 2019, 571, 51-57.	13.7	143
18	Solid-state polymer electrolytes for high-performance lithium metal batteries. Nature Communications, 2019, 10, 4398.	5.8	137

#	Article	IF	Citations
19	Electronic and Chemical Properties of Germanene: The Crucial Role of Buckling. Journal of Physical Chemistry C, 2015, 119, 3802-3809.	1.5	125
20	Nanoporous Hybrid Electrolytes for Highâ€Energy Batteries Based on Reactive Metal Anodes. Advanced Energy Materials, 2017, 7, 1602367.	10.2	122
21	Stabilizing polymer electrolytes in high-voltage lithium batteries. Nature Communications, 2019, 10, 3091.	5.8	98
22	Designer interphases for the lithium-oxygen electrochemical cell. Science Advances, 2017, 3, e1602809.	4.7	84
23	A Cation-Tethered Flowable Polymeric Interface for Enabling Stable Deposition of Metallic Lithium. Journal of the American Chemical Society, 2020, 142, 21393-21403.	6.6	65
24	A highly conductive, non-flammable polymer–nanoparticle hybrid electrolyte. RSC Advances, 2015, 5, 20800-20809.	1.7	61
25	Multifunctional Separator Coatings for Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials Interfaces, 2016, 3, 1600450.	1.9	59
26	Soft Colloidal Glasses as Solid-State Electrolytes. Chemistry of Materials, 2018, 30, 5996-6004.	3.2	59
27	Building Organic/Inorganic Hybrid Interphases for Fast Interfacial Transport in Rechargeable Metal Batteries. Angewandte Chemie, 2018, 130, 1004-1008.	1.6	55
28	Multifunctional Cross-Linked Polymeric Membranes for Safe, High-Performance Lithium Batteries. Chemistry of Materials, 2018, 30, 2058-2066.	3.2	49
29	Stabilizing Protic and Aprotic Liquid Electrolytes at High-Bandgap Oxide Interphases. Chemistry of Materials, 2018, 30, 5655-5662.	3.2	49
30	Confining electrodeposition of metals in structured electrolytes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6620-6625.	3.3	49
31	Dendrite Suppression by a Polymer Coating: A Coarseâ€Grained Molecular Study. Advanced Functional Materials, 2020, 30, 1910138.	7.8	49
32	On the Reversibility and Fragility of Sodium Metal Electrodes. Advanced Energy Materials, 2019, 9, 1901651.	10.2	48
33	Self-Suspended Suspensions of Covalently Grafted Hairy Nanoparticles. Langmuir, 2015, 31, 3222-3231.	1.6	40
34	Valence-Dependent Electrical Conductivity in a 3D Tetrahydroxyquinone-Based Metal–Organic Framework. Journal of the American Chemical Society, 2020, 142, 21243-21248.	6.6	39
35	Effects of Polymer Coating Mechanics at Solidâ€Electrolyte Interphase for Stabilizing Lithium Metal Anodes. Advanced Energy Materials, 2022, 12, .	10.2	30
36	Interactions, Structure, and Dynamics of Polymer-Tethered Nanoparticle Blends. Langmuir, 2016, 32, 8698-8708.	1.6	25

3

#	Article	IF	CITATIONS
37	Microscopic Origins of Caging and Equilibration of Self-Suspended Hairy Nanoparticles. Macromolecules, 2019, 52, 8187-8196.	2.2	15
38	Electrokinetics in Viscoelastic Liquid Electrolytes above the Diffusion Limit. Macromolecules, 2019, 52, 4666-4672.	2.2	14
39	Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport. Angewandte Chemie, 2017, 129, 13250-13257.	1.6	11
40	Structure, Rheology, and Electrokinetics of Soft Colloidal Suspension Electrolytes. Langmuir, 2020, 36, 9047-9053.	1.6	4
41	Sodium Batteries: Highly Stable Sodium Batteries Enabled by Functional Ionic Polymer Membranes (Adv.) Tj ETQq1	1 0.7843 11.1	14 rgBT /
42	High-resolution Electron Imaging and Spectroscopy of Reactive Materials and Liquid-Solid Interfaces in Energy Storage Devices. Microscopy and Microanalysis, 2019, 25, 2028-2029.	0.2	1
43	Confining Electrodeposition of Metals in Structured Electrolytes. Springer Theses, 2019, , 59-79.	0.0	1
44	Titelbild: Building Organic/Inorganic Hybrid Interphases for Fast Interfacial Transport in Rechargeable Metal Batteries (Angew. Chem. 4/2018). Angewandte Chemie, 2018, 130, 863-863.	1.6	0
45	Designing Solid-Liquid Interphases for Sodium Batteries. Springer Theses, 2019, , 95-116.	0.0	O
46	Electroless Formation of Hybrid Lithium Anodes for High Interfacial Ion Transport. Springer Theses, 2019, , 117-135.	0.0	0
47	Soft Colloidal Glasses as Solid-State Electrolytes. Springer Theses, 2019, , 163-182.	0.0	0