Vicente Muñoz-Sanjose

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4063030/publications.pdf

Version: 2024-02-01

221 papers

4,803 citations

94415 37 h-index 138468 58 g-index

222 all docs 222 docs citations

times ranked

222

5644 citing authors

#	Article	IF	CITATIONS
1	Bandgap and effective mass of epitaxial cadmium oxide. Applied Physics Letters, 2008, 92, .	3.3	158
2	Properties of the oxygen vacancy in ZnO. Applied Physics A: Materials Science and Processing, 2007, 88, 147-151.	2.3	153
3	Controlling the Phase Segregation in Mixed Halide Perovskites through Nanocrystal Size. ACS Energy Letters, 2019, 4, 54-62.	17.4	149
4	Structural and vibrational study of Bi <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> Se <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow 1998="" display="inline" math="" mathml"="" www.w3.org=""><mml:msub><mml:mrow 1998="" display="inline" math="" mathml"="" www.w3.org=""></mml:mrow></mml:msub><mml:mrow 1998="" display="inline" math="" mathml"="" www.w3.org=""><mml:msub><mml:mrow 1998="" display="inline" math="" mathml"="" www.w3.org=""><mml:msub><mml:mrow 1998="" display="inline" math="" mathml"="" www.w3.org=""><mml:msub><mml:msub><mml:mrow 1998="" display="inline" math="" mathml"="" www.w3.org=""><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:ms< td=""><td>3.2</td><td>138</td></mml:ms<></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:mrow></mml:msub></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:math>	3.2	138
5	/> <mml:mn>3</mml:mn> under high pressure. Physical Review B, 2011, 84, . Valence-band electronic structure of CdO, ZnO, and MgO from x-ray photoemission spectroscopy and quasi-particle-corrected density-functional theory calculations. Physical Review B, 2009, 79, .	3.2	124
6	Non-radiative recombination centres in catalyst-free ZnO nanorods grown by atmospheric-metal organic chemical vapour deposition. Journal Physics D: Applied Physics, 2013, 46, 235302.	2.8	101
7	High-pressure vibrational and optical study of Bi <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> Te <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow< td=""><td>3.2</td><td>100</td></mml:mrow<></mml:msub></mml:math>	3.2	100
8	Strong optical nonlinearities in gallium and indium selenides related to inter-valence-band transitions induced by light pulses. Physical Review B, 1997, 56, 4075-4084.	3.2	96
9	ZnO/CdTe/CuSCN, a promising heterostructure to act as inorganic eta-solar cell. Thin Solid Films, 2005, 483, 372-377.	1.8	87
10	Surface Band-Gap Narrowing in Quantized Electron Accumulation Layers. Physical Review Letters, 2010, 104, 256803.	7.8	86
11	Highâ€pressure studies of topological insulators Bi ₂ Se ₃ , Bi ₂ Te ₃ , and Sb ₂ Te ₃ . Physica Status Solidi (B): Basic Research, 2013, 250, 669-676.	1.5	77
12	Unification of the electrical behavior of defects, impurities, and surface states in semiconductors: Virtual gap states in CdO. Physical Review B, 2009, 79, .	3.2	76
13	Observation of quantized subband states and evidence for surface electron accumulation in CdO from angle-resolved photoemission spectroscopy. Physical Review B, 2008, 78, .	3.2	75
14	Experimental and theoretical study of band structure of InSe andIn1â^'xGaxSe(x<0.2)under high pressure:â€,Direct to indirect crossovers. Physical Review B, 2001, 63, .	3.2	73
15	Temperature dependence of the direct bandgap and transport properties of CdO. Applied Physics Letters, 2013, 102, .	3.3	68
16	A new CdTe/ZnO columnar composite film for Eta-solar cells. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 14, 229-232.	2.7	66
17	Raman scattering of cadmium oxide epilayers grown by metal-organic vapor phase epitaxy. Journal of Applied Physics, 2010, 107, .	2.5	64
18	Polarity Effects on ZnO Films Grown along the Nonpolar $[112\hat{A}^{-}0]$ Direction. Physical Review Letters, 2005, 95, 226105.	7.8	63

#	Article	IF	CITATIONS
19	Structural characterization of a-plane Zn1â^'xCdxO (0⩽x⩽0.085) thin films grown by metal-organic vapor phase epitaxy. Journal of Applied Physics, 2006, 99, 023514.	2.5	61
20	Investigation of conduction-band structure, electron-scattering mechanisms, and phase transitions in indium selenide by means of transport measurements under pressure. Physical Review B, 1997, 55, 16217-16225.	3.2	58
21	Zinc vacancies in the heteroepitaxy of ZnO on sapphire: Influence of the substrate orientation and layer thickness. Applied Physics Letters, 2005, 86, 042103.	3.3	57
22	Unravelling the Photocatalytic Behavior of All-Inorganic Mixed Halide Perovskites: The Role of Surface Chemical States. ACS Applied Materials & Surface Chemical States & Surface Chemical S	8.0	55
23	Formation and Rupture of Schottky Nanocontacts on ZnO Nanocolumns. Nano Letters, 2007, 7, 1505-1511.	9.1	54
24	Hall-effect and resistivity measurements in CdTe and ZnTe at high pressure: Electronic structure of impurities in the zinc-blende phase and the semimetallic or metallic character of the high-pressure phases. Physical Review B, 2009, 79, .	3.2	54
25	Photoluminescence study of radiative transitions in ZnTe bulk crystals. Journal of Crystal Growth, 1998, 191, 685-691.	1.5	52
26	Electron mobility in CdO films. Journal of Applied Physics, 2011, 109, .	2.5	51
27	Positron annihilation lifetime spectroscopy of ZnO bulk samples. Physical Review B, 2007, 76, .	3.2	47
28	Energetically deep defect centers in vapor-phase grown zinc oxide. Applied Physics A: Materials Science and Processing, 2007, 88, 141-145.	2.3	47
29	Correlation between Zn vacancies and photoluminescence emission in ZnO films. Journal of Applied Physics, 2006, 99, 053516.	2.5	46
30	Effects of pressure and temperature on the dielectric constant of GaS, GaSe, and InSe: $\hat{a} \in f$ Role of the electronic contribution. Physical Review B, 1999, 60, 15866-15874.	3.2	45
31	Facets evolution and surface electrical properties of nonpolar m-plane ZnO thin films. Applied Physics Letters, 2006, 88, 261912.	3.3	45
32	Determination of limiting factors of photovoltaic efficiency in quantum dot sensitized solar cells: Correlation between cell performance and structural properties. Journal of Applied Physics, 2010, 108, 064310.	2.5	42
33	Morphology transitions in ZnO nanorods grown by MOCVD. Journal of Crystal Growth, 2012, 359, 122-128.	1.5	42
34	Temperature and pressure dependence of the optical absorption in hexagonal MnTe. Physical Review B, 2000, 61, 13679-13686.	3.2	39
35	Morphology of ZnO grown by MOCVD on sapphire substrates. Journal of Crystal Growth, 2004, 264, 70-78.	1.5	39
36	Angle-resolved photoemission study and first-principles calculation of the electronic structure of GaTe. Physical Review B, 2002, 65, .	3.2	38

#	Article	IF	Citations
37	Some aspects of the MOCVD growth of ZnO on sapphire using tert-butanol. Materials Letters, 2002, 53, 126-131.	2.6	38
38	Enhanced UV emission from ZnO nanoflowers synthesized by the hydrothermal process. Journal Physics D: Applied Physics, 2012, 45, 425103.	2.8	38
39	Valence-band orbital character of CdO: A synchrotron-radiation photoelectron spectroscopy and density functional theory study. Physical Review B, 2014, 89, .	3.2	38
40	Study of the Partial Substitution of Pb by Sn in Cs–Pb–Sn–Br Nanocrystals Owing to Obtaining Stable Nanoparticles with Excellent Optical Properties. Journal of Physical Chemistry C, 2018, 122, 14222-14231.	3.1	38
41	High-pressure x-ray-absorption study of GaSe. Physical Review B, 2002, 65, . Structural analysis of CdO layers grown on r-plane sapphire <mml:math <="" altimg="si1.gif" td=""><td>3.2</td><td>36</td></mml:math>	3.2	36
42	overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML"	1.5	36
43	xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" ymlns:sb="http://www.elsevier.com/xml/co Vibrational Properties of inse under Pressure: Experiment and Theory. Physica Status Solidi (B): Basic Research, 1996, 198, 121-127.	1.5	35
44	Cinnabar phase in ZnSe at high pressure. Physical Review B, 2001, 65, .	3.2	35
45	Band structure of indium selenide investigated by intrinsic photoluminescence under high pressure. Physical Review B, 2004, 70, .	3.2	35
46	Electronic structure of single-crystal rocksalt CdO studied by soft x-ray spectroscopies and <i>ab initio </i> calculations. Physical Review B, 2008, 77, .	3.2	35
47	Anharmonic effects in ZnO optical phonons probed by Raman spectroscopy. Applied Physics Letters, 2010, 96, .	3.3	35
48	High-pressure electrical transport measurements on p-type GaSe and InSe. High Pressure Research, 2006, 26, 513-516.	1.2	33
49	Anisotropy of the refractive index and absorption coefficient in the layer plane of gallium telluride single crystals. Physica Status Solidi A, 1995, 151, 257-265.	1.7	32
50	Above-bandgap ordinary optical properties of GaSe single crystal. Journal of Applied Physics, 2009, 106,	2.5	31
51	Substrate effect on CdTe layers grown by metalorganic vapor phase epitaxy. Applied Physics Letters, 1997, 70, 1314-1316.	3.3	30
52	High-pressure x-ray absorption study of InSe. Physical Review B, 1999, 60, 3757-3763.	3.2	30
53	three-dimensional topological insulator Bi <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> Se <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow< td=""><td>3.2</td><td>29</td></mml:mrow<></mml:msub></mml:math>	3.2	29
54	() cmml:mn>3 c/mml:mn> c/mml:msub> c/mml:math>under high pressure. Physical Review B, 2012, 85, . White light emission from lead-free mixed-cation doped Cs ₂ SnCl ₆ nanocrystals. Nanoscale, 2022, 14, 1468-1479.	5.6	29

#	Article	IF	CITATIONS
55	Positron annihilation spectroscopy for the determination of thickness and defect profile in thin semiconductor layers. Physical Review B, 2007, 75, .	3.2	28
56	Hard x-ray photoelectron spectroscopy as a probe of the intrinsic electronic properties of CdO. Physical Review B, $2014, 89, .$	3.2	28
57	Synthesis and growth of PbTe crystals at low temperature and their characterization. Journal of Crystal Growth, 1999, 196, 71-76.	1.5	26
58	CdTe crystal growth process by the Bridgman method: numerical simulation. Journal of Crystal Growth, 2001, 222, 435-451.	1.5	26
59	Specific features of the electronic structure of Ill–VI layered semiconductors: recent results on structural and optical measurements under pressure and electronic structure calculations. Physica Status Solidi (B): Basic Research, 2003, 235, 267-276.	1.5	26
60	Study of the ZnO crystal growth by vapour transport methods. Journal of Crystal Growth, 2004, 270, 711-721.	1.5	26
61	Ab-Initio Studies of Electronic and Spectroscopic Properties of MgO, ZnO and CdO. Journal of the Korean Physical Society, 2008, 53, 2811-2815.	0.7	26
62	Optical properties of zinc phosphide. Journal of Applied Physics, 1986, 60, 3282-3288.	2.5	25
63	Investigation of nitrogen-related acceptor centers in indium selenide by means of photoluminescence: Determination of the hole effective mass. Physical Review B, 1997, 55, 6981-6987.	3.2	24
64	Growth and characterisation of MnTe crystals. Journal of Crystal Growth, 2001, 223, 349-356.	1.5	24
65	Near band edge recombination mechanisms in GaTe. Physical Review B, 2003, 68, .	3.2	24
66	Anomalous Raman modes in tellurides. Journal of Materials Chemistry C, 0, , .	5.5	24
67	X-ray-absorption fine-structure study of ZnSexTe1â^'x alloys. Journal of Applied Physics, 2004, 96, 1491-1498.	2.5	23
68	High-pressure Raman scattering of CdO thin films grown by metal-organic vapor phase epitaxy. Journal of Applied Physics, 2013, 113, .	2.5	23
69	Engineering Sr-doping for enabling long-term stable FAPb _{1â^'x} Sr _x I ₃ quantum dots with 100% photoluminescence quantum yield. Journal of Materials Chemistry C, 2021, 9, 1555-1566.	5.5	23
70	Recombination processes in unintentionally doped GaTe single crystals. Journal of Applied Physics, 2002, 92, 7330-7336.	2.5	21
71	Photoluminescence Study of ZnSe Single Crystals Obtained by Solid Phase Recrystallization under Different Pressure Conditions. Effects of Thermal Treatment. Physica Status Solidi A, 2002, 194, 338-348.	1.7	21
72	Complex dielectric function and refractive index spectra of epitaxial CdO thin film grown on r-plane sapphire from 0.74 to 6.45 eV. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, 1120-1124.	1.2	21

#	Article	IF	CITATIONS
73	Procedures for synthesis of single-phase 2212 bismuth material. Journal of the Less Common Metals, 1989, 150, 247-251.	0.8	20
74	Direct to Indirect Crossover in III-VI Layered Compounds and Alloys under Pressure. Physica Status Solidi (B): Basic Research, 1999, 211, 33-38.	1.5	20
75	Light-induced transmission nonlinearities in gallium selenide. Journal of Applied Physics, 1999, 85, 3780-3785.	2.5	20
76	X-ray photoemission studies of the electronic structure of single-crystalline CdO(100). Superlattices and Microstructures, 2007, 42, 197-200.	3.1	20
77	Preferred Growth Direction by PbS Nanoplatelets Preserves Perovskite Infrared Light Harvesting for Stable, Reproducible, and Efficient Solar Cells. Advanced Energy Materials, 2020, 10, 2002422.	19.5	20
78	Photoluminescence in ZnO:Co ²⁺ (0.01%–5%) Nanoparticles, Nanowires, Thin Films, and Single Crystals as a Function of Pressure and Temperature: Exploring Electron–Phonon Interactions. Chemistry of Materials, 2014, 26, 1100-1107.	6.7	19
79	Optical absorption in GaTe under high pressure. Physical Review B, 1999, 60, 8871-8877.	3.2	18
80	CdTe epilayers for uses in optical waveguides. Applied Physics A: Materials Science and Processing, 2000, 71, 277-279.	2.3	18
81	MOCVD growth of CdTe on glass: analysis of in situ post-growth annealing. Journal of Crystal Growth, 2004, 262, 19-27.	1.5	18
82	Optical active centres in ZnO samples. Journal of Non-Crystalline Solids, 2006, 352, 1453-1456.	3.1	18
83	Neutron irradiation defects in gallium sulfide: Optical absorption measurements. Journal of Applied Physics, 1997, 81, 6651-6656.	2.5	17
84	Some fundamentals of the vapor and solution growth of ZnSe and ZnO. Journal of Crystal Growth, 1999, 198-199, 968-974.	1.5	17
85	High-pressure x-ray absorption study of GaTe including polarization. Physical Review B, 2000, 61, 125-131.	3.2	17
86	Mn ²⁺ â€induced roomâ€temperature ferromagnetism and spinâ€glass behavior in hydrothermally grown Mnâ€doped ZnO nanorods. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 1155-1161.	1.8	17
87	Quenching and blue shift of UV emission intensity of hydrothermally grown ZnO:Mn nanorods. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 191, 1-6.	3.5	17
88	Rock-salt CdZnO as a transparent conductive oxide. Applied Physics Letters, 2018, 113, .	3.3	17
89	Cathodoluminescence microscopy and photoluminescence of defects in ZnTe. Semiconductor Science and Technology, 1998, 13, 410-416.	2.0	16
90	Scanning electron microscopy characterization of ZnSe single crystals grown by solid-phase recrystallization. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 78, 105-108.	3.5	16

#	Article	IF	Citations
91	Influence of twinned structure on the morphology of CdTe(111) layers grown by MOCVD on GaAs(100) substrates. Journal of Crystal Growth, 2003, 257, 60-68.	1.5	16
92	Microstructural characterization of TiB2 armor targets. Journal of Materials Science Letters, 2002, 21, 1661-1666.	0.5	15
93	Structural characterization of CdTe layers grown on (0001) sapphire by MOCVD. Journal of Crystal Growth, 2004, 270, 309-315.	1.5	15
94	Optical properties and microstructure of 2.02-3.30 eV ZnCdO nanowires: Effect of thermal annealing. Applied Physics Letters, 2013, 102, .	3.3	15
95	Pressure Dependence of the Low-Frequency Dielectric Constant in III-VI Semiconductors. Physica Status Solidi (B): Basic Research, 1999, 211, 201-206.	1.5	14
96	Numerical study of the ZnO growth by MOCVD. Journal of Crystal Growth, 2004, 264, 237-245.	1.5	14
97	X-ray characterization of CdO thin films grown ona-,c-,r- andm-plane sapphire by metalorganic vapour phase-epitaxy. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 1233-1238.	0.8	14
98	High-pressure phase diagram ofZnSexTe1â^'xalloys. Physical Review B, 2005, 71, .	3.2	14
99	Twin coarsening in CdTe(111) films grown on GaAs(100). Acta Materialia, 2006, 54, 4285-4291.	7.9	14
100	Hg1â^'xCdxI2/CdTe heterostructures for nuclear radiation detectors: Effect of epitaxial growth on substrate properties. Applied Physics Letters, 1998, 72, 2023-2025.	3.3	13
101	Pressure dependence of the refractive index in InSe. Semiconductor Science and Technology, 2000, 15, 806-812.	2.0	13
102	A numerical study of thermal conditions in the THM growth of HgTe. Journal of Crystal Growth, 2002, 243, 463-475.	1.5	13
103	Ellipsometric study of single-crystal Î ³ -InSe from 1.5 to 9.2 eV. Applied Physics Letters, 2010, 96, 181902.	3.3	13
104	Temperature effects on the positron annihilation characteristics in III-VI layered semiconductors. Journal of Physics Condensed Matter, 1993, 5, 971-976.	1.8	12
105	Low-pressure synthesis and Bridgman growth of Hg1â^'xMnxTe. Journal of Crystal Growth, 1999, 197, 688-693.	1.5	12
106	Heat transfer simulation in a vertical Bridgman CdTe growth configuration. Journal of Crystal Growth, 1999, 197, 435-442.	1.5	12
107	Pressure and temperature dependence of the band-gap in CdTe. Physica Status Solidi (B): Basic Research, 2003, 235, 441-445.	1.5	12
108	One-step growth of isolated CdO nanoparticles on r-sapphire substrates by using the spray pyrolysis methodology. RSC Advances, 2014, 4, 23137.	3.6	12

#	Article	IF	Citations
109	High Pressure EXAFS on GaTe Single Crystal Including Polarization. Physica Status Solidi (B): Basic Research, 1999, 211, 389-393.	1.5	11
110	Crystal Growth of HgSe by the Cold Travelling Heater Method. Crystal Growth and Design, 2002, 2, 91-92.	3.0	11
111	Negative U-properties of the oxygen-vacancy in ZnO. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 997-1000.	0.8	11
112	Intrinsic and extrinsic point-defects in vapor transport grown ZnO bulk crystals. Physica B: Condensed Matter, 2006, 376-377, 767-770.	2.7	11
113	Growth of ZnO crystals by vapour transport: Some ways to act on physical properties. Crystal Research and Technology, 2006, 41, 742-747.	1.3	11
114	Anisotropic chemical etching of semipolar $\{10\text{ar }\{1\}\text{ar }\{1\}\}$ mbox $\{/\}$ $\{10\text{ar }\{1\}\{+\}1\}$ ZnO crystallographic planes: polarity versus dangling bonds. Nanotechnology, 2009, 20, 065701.	2.6	11
115	Self-assembled MgxZn _{$1\hat{a}^2$x} O quantum dots (0 \hat{a} % x \hat{a} % 1) on different substrates using spray pyrolysis methodology. CrystEngComm, 2013, 15, 182-191.	2.6	11
116	Influence of metal organic chemical vapour deposition growth conditions on vibrational and luminescent properties of ZnO nanorods. Journal of Applied Physics, 2013, 113, .	2.5	11
117	Temperature-dependent optical properties of epitaxial CdO thin films determined by spectroscopic ellipsometry and Raman scattering. Journal of Applied Physics, 2013, 113, 183515.	2.5	11
118	VIS-UV ZnCdO/ZnO multiple quantum well nanowires and the quantification of Cd diffusion. Nanotechnology, 2014, 25, 255202.	2.6	11
119	Effect of Growth Temperature on the Structural and Morphological Properties of MgCdO Thin Films Grown by Metal Organic Chemical Vapor Deposition. Crystal Growth and Design, 2017, 17, 6303-6310.	3.0	11
120	Comments on "Anomalously Large Shift of Absorption Edge of GaSe-Based Layered Crystals by Applied Electric Fieldâ€, Japanese Journal of Applied Physics, 1991, 30, L608-L609.	1.5	10
121	Thermal recovery of the lattice damage in neutron-transmutation-doped InSe. Physical Review B, 1993, 47, 2870-2873.	3.2	10
122	Annealing-induced Changes in the Electronic and Structural Properties of ZnTe Substrates. Journal of Materials Research, 2000, 15, 1612-1616.	2.6	10
123	A new approach to the growth of ZnO by vapour transport. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 1106-1114.	0.8	10
124	Structural characterization of one-dimensional ZnO-based nanostructures grown by MOCVD. Physica Status Solidi (B): Basic Research, 2010, 247, 1683-1686.	1.5	10
125	Self-Assembled Zinc Oxide Quantum Dots Using Spray Pyrolysis Methodology. Crystal Growth and Design, 2011, 11, 3790-3801.	3.0	10
126	Controllable and Highly Propagative Hybrid Surface Plasmon–Phonon Polariton in a CdZnO-Based Two-Interface System. ACS Photonics, 2019, 6, 2816-2822.	6.6	10

#	Article	IF	Citations
127	High Optical Performance of Cyanâ€Emissive CsPbBr ₃ Perovskite Quantum Dots Embedded in Molecular Organogels. Advanced Optical Materials, 2021, 9, 2001786.	7.3	10
128	Temperature dependence of refractive index and absorption coefficient of GaSe at 633 nm. Optics Communications, 1995, 118, 335-337.	2.1	9
129	Cathodoluminescence study of laser recrystallized CdTe layers. Applied Physics Letters, 1997, 71, 3096-3098.	3.3	9
130	Luminescence and structural properties of defects in ion implanted ZnO. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 968-971.	0.8	9
131	Optical properties of ZnMgO films grown by spray pyrolysis and their application to UV photodetection. Semiconductor Science and Technology, 2015, 30, 105026.	2.0	9
132	Vapor phase epitaxy of Hg1â^'xCdxl2 layers on CdTe substrates. Journal of Crystal Growth, 1997, 171, 425-432.	1.5	8
133	Electronic structure and optical properties of CdTe rock-salt high pressure phase. Physica Status Solidi (B): Basic Research, 2003, 235, 509-513.	1.5	8
134	Growth of tin oxide thin films composed of nanoparticles on hydrophilic and hydrophobic glass substrates by spray pyrolysis technique. Applied Surface Science, 2015, 357, 915-921.	6.1	8
135	MOCVD growth of CdO very thin films: Problems and ways of solution. Applied Surface Science, 2016, 385, 209-215.	6.1	8
136	Effects of Conduction Band Structure and Dimensionality of the Electron Gas on Transport Properties of InSe under Pressure. Physica Status Solidi (B): Basic Research, 1996, 198, 129-134.	1.5	7
137	The application of the photoacoustic transmittance oscillations for determining elastic constants in gallium and indium selenides. Journal of Applied Physics, 1996, 79, 3200-3204.	2.5	7
138	Selective area vapor-phase epitaxy and structural properties of Hg1 â^' xCdxTe on sapphire. Journal of Crystal Growth, 1997, 179, 585-591.	1.5	7
139	Optical Absorption of Zinc Selenide Doped with Cobalt (Zn1-xCoxSe) under Hydrostatic Pressure. Physica Status Solidi A, 2000, 180, 561-568.	1.7	7
140	A new approach to the crystal growth of Hg1â^'xMnxTe by the cold travelling heater method (CTHM). Journal of Crystal Growth, 2001, 223, 357-362.	1.5	7
141	Deep center luminescence versus surface preparation of ZnSe single crystals. Journal of Materials Research, 2001, 16, 1245-1248.	2.6	7
142	Structural and morphological characterizations of ZnO films grown on GaAs substrates by MOCVD. Applied Physics A: Materials Science and Processing, 2007, 88, 83-87.	2.3	7
143	Nanoscale determination of surface orientation and electrostatic properties of ZnO thin films. Applied Physics A: Materials Science and Processing, 2007, 88, 77-82.	2.3	7
144	On the interplay of point defects and Cd in non-polar ZnCdO films. Journal of Applied Physics, 2013, 113, 023512.	2.5	7

#	Article	IF	Citations
145	Morphology and Band Structure of Orthorhombic PbS Nanoplatelets: An Indirect Band Gap Material. Chemistry of Materials, 2021, 33, 420-429.	6.7	7
146	High-Tc YBACUO superconductors from metallo-organic precursors. Materials Research Bulletin, 1988, 23, 987-992.	5.2	6
147	Effect of plastic deformation on photoluminescence of ZnTe bulk monocrystals. Journal of Crystal Growth, 1999, 197, 794-798.	1.5	6
148	Band-to-Band and Band-to-Acceptor Photoluminescence Studies in InSe under Pressure. Physica Status Solidi (B): Basic Research, 1999, 211, 105-110.	1.5	6
149	Observation of the Cinnabar Phase in ZnSe at High Pressure. High Pressure Research, 2002, 22, 355-359.	1.2	6
150	Surface passivation of gallium selenide by nitrogen implantation. Surface and Interface Analysis, 2002, 34, 460-463.	1.8	6
151	Numerical study of the growth conditions in an MOCVD reactor: application to the epitaxial growth of HgTe. Journal of Crystal Growth, 2002, 240, 124-134.	1.5	6
152	Semiconductor-metal transitions in liquidIn100â^'xSexalloys: A concentration-induced transition. Physical Review B, 2004, 69, .	3.2	6
153	Growth and characterization of Mg _{1â€x} Cd _x O thin films. Physica Status Solidi C: Current Topics in Solid State Physics, 2016, 13, 452-455.	0.8	6
154	Correlative study of structural and optical properties of ZnSe under severe plastic deformation. Journal of Applied Physics, 2019, 126, 225702.	2.5	6
155	Self-assembled metal-oxide nanoparticles on GaAs: infrared absorption enabled by localized surface plasmons. Nanophotonics, 2021, 10, 2509-2518.	6.0	6
156	Characterization of Non-Polar ZnO Layers with Positron Annihilation Spectroscopy. Acta Physica Polonica A, 2008, 114, 1257-1264.	0.5	6
157	Structural defects in Hg1â^'xCdxl2 layers grown on CdTe substrates by vapor phase epitaxy. Journal of Applied Physics, 1997, 82, 4889-4891.	2.5	5
158	Vapor phase epitaxy of Hg1â^'xCdxl2 on sapphire. Journal of Crystal Growth, 1998, 192, 342-345.	1.5	5
159	Vapor growth of Hg1â^'xCdxl2 on glass using CdTe buffer. Thin Solid Films, 2001, 381, 48-51.	1.8	5
160	Pressure Dependence of the Bandgap Bowing in Zinc-Blende ZnTe 1â° x Se x. High Pressure Research, 2002, 22, 257-260.	1.2	5
161	Nanogoniometry with Scanning Force Microscopy: A Model Study of CdTe Thin Films. Small, 2007, 3, 474-480.	10.0	5
162	High resolution x-ray diffraction methodology for the structural analysis of one-dimensional nanostructures. Journal of Applied Physics, 2012, 112, .	2.5	5

#	Article	IF	CITATIONS
163	Observation of a charge delocalization from Se vacancies in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Bi</mml:mi><mml:mn .<="" 2016,="" 94,="" a="" annihilation="" b,="" defects.="" native="" of="" physical="" positron="" review="" study="" td=""><td>>22/mml:1</td><td>าธา></td></mml:mn></mml:msub></mml:mrow></mml:math>	>22/mml:1	า ธ า>
164	Structural and morphological characterization of the Cd-rich region in Cd1-xZnxO thin films grown by atmospheric pressure metal organic chemical vapour deposition. Thin Solid Films, 2019, 683, 128-134.	1.8	5
165	Growth and electrical properties of Zn3P2 single crystals and polycrystalline ingots. Journal of Materials Science, 1987, 22, 1265-1270.	3.7	4
166	Comparative study of synthetic procedures for YBACUO-type oxides. Solid State Ionics, 1989, 32-33, 1160-1166.	2.7	4
167	Time resolved photoluminescence of Cd-doped InSe. European Physical Journal B, 1993, 91, 25-30.	1.5	4
168	Photoluminescence Related to the Interaction between Carriers and Structural Defects in ZnTe Crystals. Japanese Journal of Applied Physics, 1999, 38, 5123-5127.	1.5	4
169	High density photoluminescence induced by laser pulse excitation in InSe under pressure. High Pressure Research, 2000, 18, 81-87.	1.2	4
170	Cathodoluminescence and photoluminescence study of plastically deformed ZnTe bulk single crystals. Semiconductor Science and Technology, 2001, 16, 289-292.	2.0	4
171	STRUCTURAL CHARACTERIZATION OF THE CINNABAR PHASE IN ZnSexTe1-x ALLOYS. High Pressure Research, 2003, 23, 339-342.	1.2	4
172	Crystal growth of Hg1â^xMnxSe for infrared detection. Microelectronics Journal, 2007, 38, 327-331.	2.0	4
173	ZnO films grown by MOCVD on GaAs substrates: Effects of a Zn buffer deposition on interface, structural and morphological properties. Journal of Crystal Growth, 2009, 311, 2564-2571.	1.5	4
174	Growth and characterization of self-assembled Cd $<$ sub $>$ 1 \hat{a} ' $x<$ /sub $>$ Mg $<$ sub $>$ x $<$ /sub $>$ O (0 \hat{a} % x \hat{a} % 1) nanoparticles on r-sapphire substrates. CrystEngComm, 2014, 16, 8969-8976.	2.6	4
175	ZnMgO-based UV photodiodes: a comparison of films grown by spray pyrolysis and MBE. , 2016, , .		4
176	Local structure in <mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>G</mml:mi><mml:msub><mml:mi>a</mml:mi><mml:mrow><mml:mn>1 alloys. Journal of Alloys and Compounds, 2021, 852, 156365.</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>	≰រត្តml:mr	ıжmml:mo>
177	Structural and Optical Properties of Zn(1-x)CdxO Solid Solutions Grown on ZnO Substrates by Using MO-CVD. Journal of the Korean Physical Society, 2008, 53, 158-162.	0.7	4
178	Effect of surface damage on the photoconductivity response of zinc phosphide. Physica Status Solidi A, 1986, 97, 587-591.	1.7	3
179	Study of the chemically activated sublimation of ZnSe. Journal of Crystal Growth, 1999, 197, 497-503.	1.5	3
180	Surface texturisation of ZnTe crystals and thin films. Thin Solid Films, 2000, 361-362, 49-52.	1.8	3

#	Article	IF	Citations
181	Scanning electron microscopy study of twins in ZnSe single crystals grown by solid-phase recrystallization. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 80, 130-133.	3.5	3
182	Effect of structural and compositional inhomogeneities on spin-glass transition in Hg1â^'xâ^'yCrxMnySe crystals. Journal of Crystal Growth, 2004, 262, 403-407.	1.5	3
183	Faceting and structural anisotropy of nanopatterned CdO(110) layers. Journal of Applied Physics, 2005, 98, 034311.	2.5	3
184	Assessment of the out-plane and in-plane ordering of high quality ZnO nanorods by X-ray multiple diffraction. Thin Solid Films, 2013, 541, 107-112.	1.8	3
185	High resolution X-ray diffraction, X-ray multiple diffraction and cathodoluminescence as combined tools for the characterization of substrates for epitaxy: the ZnO case. CrystEngComm, 2013, 15, 3951.	2.6	3
186	Hybrid multiple diffraction in semipolar wurtzite materials: (f 01 overline $\{1\}2$)-oriented ZnMgO/ZnO heterostructures as an illustration. Journal of Applied Crystallography, 2017 , 50 , 1165 - 1173 .	4.5	3
187	Numerical analysis of thermally induced optical nonlinearity in GaSe layered crystal. IEE Proceedings: Optoelectronics, 1996, 143, 244-247.	0.8	2
188	Refractive index of GaTe under high pressure. Semiconductor Science and Technology, 2000, 15, 902-907.	2.0	2
189	Nanocrystals of cdte formed by the pressure cycle method. High Pressure Research, 2003, 23, 29-33.	1.2	2
190	II–VI and II1â~'xMnxVI semiconductor nanocrystals formed by the pressure cycle method. High Pressure Research, 2005, 25, 119-135.	1.2	2
191	Study of the MOCVD growth of ZnO on GaAs substrates: Influence of the molar ratio of the precursors on structural and morphological properties. Superlattices and Microstructures, 2007, 42, 140-144.	3.1	2
192	Response to "Comment on â€~Bandgap and effective mass determination of epitaxial cadmium oxide'― [Appl. Phys. Lett. 92, 106103 (2008)]. Applied Physics Letters, 2008, 92, 106104.	3.3	2
193	Spray pyrolytic deposition of ZnO thin layers composed of low dimensional nanostructures. Physics Procedia, 2010, 8, 14-17.	1.2	2
194	Non radiative recombination centers in ZnO nanorods. Materials Research Society Symposia Proceedings, 2013, 1538, 317-322.	0.1	2
195	Gas-phase supersaturation effects on morphology properties of ZnO nano and microstructures grown by PVT. Journal of Physics: Conference Series, 2016, 687, 012027.	0.4	2
196	SubstructuralÂProperties and Anisotropic Peak Broadening in Zn1â^'x Mn x Te Films Determined by a Combined Methodology Based on SEM, HRTEM, XRD, and HRXRD. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 6645-6654.	2.2	2
197	Induced crystallographic changes in Cd1â^'xZnxO films grown on r-sapphire by AP-MOCVD: the effects of the Zn content when x ≠0.5. CrystEngComm, 2020, 22, 74-84.	2.6	2
198	A numerical solution for the nonlinear diffusion equation of the electromagnetic field in ferromagnetic materials. Journal of Computational Physics, 1986, 65, 432-447.	3.8	1

#	Article	IF	CITATIONS
199	Improved systems for the measurement of hysteresis loops: DC and AC characterisation. Journal of Physics E: Scientific Instruments, 1987, 20, 861-865.	0.7	1
200	Neutron transmutation doping of Ill–VI layered semiconductors. Materials Science and Technology, 1997, 13, 954-956.	1.6	1
201	Optical absorption of zinc selenide doped with cobalt (Zn1â^'xCoxSe) under hydrostatic pressure. High Pressure Research, 2000, 18, 89-94.	1.2	1
202	New method for the determination of the defect profile in thin layers grown over a substrate. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 3973-3976.	0.8	1
203	Thermal Creation of Defects in GaTe. Japanese Journal of Applied Physics, 2008, 47, 8719-8722.	1.5	1
204	Crystal growth of ZnO micro and nanostructures by PVT on c-sapphire and amorphous quartz substrates. Physics Procedia, 2010, 8, 121-125.	1.2	1
205	Temperature- and illumination-induced charge-state change in divacancies of GaTe. Physical Review B, 2010, 81, .	3.2	1
206	Determination of defect content and defect profile in semiconductor heterostructures. Journal of Physics: Conference Series, 2011, 265, 012004.	0.4	1
207	Synthesis and Characterization of ZnO Nano and Micro Structures Grown by Low Temperature Spray Pyrolysis and Vapor Transport. Journal of Nanoscience and Nanotechnology, 2012, 12, 6792-6799.	0.9	1
208	The Scope of Zinc Oxide Bulk Growth. , 2005, , 3-14.		1
209	Comparative study of synthetic procedures for YBaCuO-type oxides. Solid State Ionics, 1988, 26, 148.	2.7	0
210	<title>Anisotropy of the optical constants in the layer plane of GaTe single crystals</title> ., 1996, 2730, 591.		0
211	Effect of Neutron Irradiation on Ga-Based Semiconductors. Materials Science Forum, 1997, 258-263, 1235-1240.	0.3	0
212	Quantum dots of Cd0.5Mn0.5Te semimagnetic semiconductor formed by the cold isostatic pressure method. Journal of Magnetism and Magnetic Materials, 2005, 294, e77-e81.	2.3	0
213	X-ray and transmission electron microscopy characterization of twinned CdO thin films grown on a-plane sapphire by metalorganic vapour phase epitaxy. Applied Physics A: Materials Science and Processing, 2007, 88, 61-64.	2.3	0
214	Growth and characterization of GdxHg1â^'xSe crystals. Journal of Crystal Growth, 2008, 310, 3752-3757.	1.5	0
215	Publisher's Note: Observation of a charge delocalization from Se vacancies inBi2Se3: A positron annihilation study of native defects [Phys. Rev. B 94, 014117 (2016)]. Physical Review B, 2016, 94, .	3.2	0
216	Phase segregation in MgxZn1–xO probed by optical absorption and photoluminescence at high pressure. Journal of Applied Physics, 2017, 122, 105902.	2.5	0

#	Article	IF	CITATIONS
217	Sensing properties of ZnO nanostructured layers. , 2017, , .		O
218	Enabling long-term stable FAPb1-xSrxl3 quantum dots with high optical performance: the effect of Sr2+ doping. , 0, , .		0
219	Plasmonic CdZnO nanoparticles for enhanced GaAs-based quantum well intersubband absorption. , 2021, , .		0
220	Coupling of localized surface plasmons to intersubband transitions in CdO/GaAs., 2022,,.		0
221	Dynamics of thermally induced optical nonlinearity in GaSe thin slabs. Microwave and Optical Technology Letters, 1996, 12, 81-85.	1.4	0