
## Yoshitaka Oka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4062860/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Integrated analyses using medaka as a powerful model animal toward understanding various aspects of reproductive regulation. , 2022, , 215-243.                                                                                                                           |     | 4         |
| 2  | Multiple gonadotropinâ€releasing hormone systems in nonâ€mammalian vertebrates: Ontogeny, anatomy,<br>and physiology. Journal of Neuroendocrinology, 2022, 34, e13068.                                                                                                    | 1.2 | 9         |
| 3  | Estrogen upregulates the firing activity of hypothalamic gonadotropinâ€releasing hormone (GnRH1)<br>neurons in the evening in female medaka. Journal of Neuroendocrinology, 2022, 34, e13101.                                                                             | 1.2 | 1         |
| 4  | Co-existing Neuropeptide FF and Gonadotropin-Releasing Hormone 3 Coordinately Modulate Male<br>Sexual Behavior. Endocrinology, 2022, 163, .                                                                                                                               | 1.4 | 7         |
| 5  | Kisspeptin. , 2021, , 21-23.                                                                                                                                                                                                                                              |     | 1         |
| 6  | Establishment of open-source semi-automated behavioral analysis system and quantification of the difference of sexual motivation between laboratory and wild strains. Scientific Reports, 2021, 11, 10894.                                                                | 1.6 | 6         |
| 7  | TMC4 is a novel chloride channel involved in high-concentration salt taste sensation. Journal of Physiological Sciences, 2021, 71, 23.                                                                                                                                    | 0.9 | 27        |
| 8  | Examination of methods for manipulating serum 17β-Estradiol (E2) levels by analysis of blood E2<br>concentration in medaka (Oryzias latipes). General and Comparative Endocrinology, 2020, 285, 113272.                                                                   | 0.8 | 20        |
| 9  | Multiple functions of non-hypophysiotropic gonadotropin releasing hormone neurons in vertebrates. Zoological Letters, 2019, 5, 23.                                                                                                                                        | 0.7 | 22        |
| 10 | Gene knockout analysis reveals essentiality of estrogen receptor β1 (Esr2a) for female reproduction in<br>medaka. Scientific Reports, 2019, 9, 8868.                                                                                                                      | 1.6 | 46        |
| 11 | Sexually Dimorphic Neuropeptide B Neurons in Medaka Exhibit Activated Cellular Phenotypes<br>Dependent on Estrogen. Endocrinology, 2019, 160, 827-839.                                                                                                                    | 1.4 | 17        |
| 12 | Morphological Analysis of the Axonal Projections of EGFP-Labeled Esr1-Expressing Neurons in<br>Transgenic Female Medaka. Endocrinology, 2018, 159, 1228-1241.                                                                                                             | 1.4 | 8         |
| 13 | Juvenile-Specific Burst Firing of Terminal Nerve GnRH3 Neurons Suggests Novel Functions in Addition to Neuromodulation. Endocrinology, 2018, 159, 1678-1689.                                                                                                              | 1.4 | 7         |
| 14 | Evolutionally Conserved Function of Kisspeptin Neuronal System Is Nonreproductive Regulation as Revealed by Nonmammalian Study. Endocrinology, 2018, 159, 163-183.                                                                                                        | 1.4 | 83        |
| 15 | High-Frequency Firing Activity of GnRH1 Neurons in Female Medaka Induces the Release of GnRH1<br>Peptide From Their Nerve Terminals in the Pituitary. Endocrinology, 2017, 158, 2603-2617.                                                                                | 1.4 | 17        |
| 16 | Kisspeptin. , 2016, , 10-e1B-2.                                                                                                                                                                                                                                           |     | 0         |
| 17 | Morphological analysis of the early development of telencephalic and diencephalic<br>gonadotropinâ€releasing hormone neuronal systems in enhanced green fluorescent proteinâ€expressing<br>transgenic medaka lines. Journal of Comparative Neurology, 2016, 524, 896-913. | 0.9 | 21        |
| 18 | Female-Specific Glucose Sensitivity of GnRH1 Neurons Leads to Sexually Dimorphic Inhibition of Reproduction in Medaka. Endocrinology, 2016, 157, 4318-4329.                                                                                                               | 1.4 | 21        |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Evolution of the Hypothalamic-Pituitary-Gonadal Axis Regulation in Vertebrates Revealed by Knockout<br>Medaka. Endocrinology, 2016, 157, 3994-4002.                                                                  | 1.4 | 107       |
| 20 | GnRH suppresses excitability of visual processing neurons in the optic tectum. Journal of Neurophysiology, 2015, 114, 2775-2784.                                                                                     | 0.9 | 27        |
| 21 | Neurones in the Preoptic Area of the Male Goldfish are Activated by a Sex Pheromone<br>17α,20βâ€Đihydroxyâ€4â€Pregnenâ€3â€One. Journal of Neuroendocrinology, 2015, 27, 123-130.                                     | 1.2 | 11        |
| 22 | Whole Brain-Pituitary In Vitro Preparation of the Transgenic Medaka (Oryzias latipes) as a Tool for<br>Analyzing the Differential Regulatory Mechanisms of LH and FSH Release. Endocrinology, 2014, 155,<br>536-547. | 1.4 | 49        |
| 23 | Kiss1 Neurons Drastically Change Their Firing Activity in Accordance With the Reproductive State:<br>Insights From a Seasonal Breeder. Endocrinology, 2014, 155, 4868-4880.                                          | 1.4 | 20        |
| 24 | Dynamic evolution of the GnRH receptor gene family in vertebrates. BMC Evolutionary Biology, 2014, 14, 215.                                                                                                          | 3.2 | 30        |
| 25 | A Neural Mechanism Underlying Mating Preferences for Familiar Individuals in Medaka Fish. Science, 2014, 343, 91-94.                                                                                                 | 6.0 | 151       |
| 26 | Sexually dimorphic expression of the sex chromosome-linked genes cntfa and pdlim3a in the medaka brain. Biochemical and Biophysical Research Communications, 2014, 445, 113-119.                                     | 1.0 | 17        |
| 27 | Anatomical distribution of sex steroid hormone receptors in the brain of female medaka. Journal of<br>Comparative Neurology, 2013, 521, 1760-1780.                                                                   | 0.9 | 32        |
| 28 | Structure, Synthesis, and Phylogeny of Kisspeptin and its Receptor. Advances in Experimental Medicine and Biology, 2013, 784, 9-26.                                                                                  | 0.8 | 18        |
| 29 | Neuropeptide RFRP inhibits the pacemaker activity of terminal nerve GnRH neurons. Journal of Neurophysiology, 2013, 109, 2354-2363.                                                                                  | 0.9 | 20        |
| 30 | Expression and Putative Function of Kisspeptins and Their Receptors During Early Development in Medaka. Endocrinology, 2013, 154, 3437-3446.                                                                         | 1.4 | 29        |
| 31 | Neurobiological Study of Fish Brains Gives Insights into the Nature of Gonadotropin-Releasing<br>Hormone 1–3 Neurons. Frontiers in Endocrinology, 2013, 4, 177.                                                      | 1.5 | 49        |
| 32 | Burst generation mediated by cholinergic input in terminal nerveâ€gonadotrophin releasing hormone<br>neurones of the goldfish. Journal of Physiology, 2013, 591, 5509-5523.                                          | 1.3 | 9         |
| 33 | Neuroanatomical Evidence That Kisspeptin Directly Regulates Isotocin and Vasotocin Neurons. PLoS<br>ONE, 2013, 8, e62776.                                                                                            | 1.1 | 85        |
| 34 | Dopaminergic neuromodulation of synaptic transmission between mitral and granule cells in the teleost olfactory bulb. Journal of Neurophysiology, 2012, 107, 1313-1324.                                              | 0.9 | 9         |
| 35 | Female-specific target sites for both oestrogen and androgen in the teleost brain. Proceedings of the<br>Royal Society B: Biological Sciences, 2012, 279, 5014-5023.                                                 | 1.2 | 50        |
| 36 | Time-of-Day-Dependent Changes in GnRH1 Neuronal Activities and Gonadotropin mRNA Expression in a<br>Daily Spawning Fish, Medaka. Endocrinology, 2012, 153, 3394-3404.                                                | 1.4 | 65        |

| #  | Article                                                                                                                                                                                                                                             | IF                | CITATIONS          |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|
| 37 | Evolutionary Insights into the Steroid Sensitive kiss1 and kiss2 Neurons in the Vertebrate Brain.<br>Frontiers in Endocrinology, 2012, 3, 28.                                                                                                       | 1.5               | 36                 |
| 38 | Steroid Sensitive <i>kiss2</i> Neurones in the Goldfish: Evolutionary Insights into the Duplicate<br>Kisspeptin Geneâ€Expressing Neurones. Journal of Neuroendocrinology, 2012, 24, 897-906.                                                        | 1.2               | 59                 |
| 39 | Central distribution of kiss2 neurons and peri-pubertal changes in their expression in the brain of<br>male and female red seabream Pagrus major. General and Comparative Endocrinology, 2012, 175, 432-442.                                        | 0.8               | 30                 |
| 40 | Neural mechanism for female mating preference of medaka mediated by visual information.<br>Neuroscience Research, 2011, 71, e267.                                                                                                                   | 1.0               | 0                  |
| 41 | Anatomical relations between neuropeptide Y, galanin, and gonadotropin-releasing hormone in the<br>brain of chondrostean, the Siberian sturgeon Acipenser baeri. Neuroscience Letters, 2011, 503, 87-92.                                            | 1.0               | 12                 |
| 42 | Mechanisms of Neuromodulation by a Nonhypophysiotropic GnRH System Controlling Motivation of<br>Reproductive Behavior in the Teleost Brain. Journal of Reproduction and Development, 2011, 57,<br>665-674.                                          | 0.5               | 24                 |
| 43 | Sex Differences in Aromatase Gene Expression in the Medaka Brain. Journal of Neuroendocrinology, 2011, 23, 412-423.                                                                                                                                 | 1.2               | 56                 |
| 44 | Expression of Vesicular Glutamate Transporter-2.1 in Medaka Terminal Nerve Gonadotrophin-Releasing<br>Hormone Neurones. Journal of Neuroendocrinology, 2011, 23, 570-576.                                                                           | 1.2               | 13                 |
| 45 | Differential regulation of the luteinizing hormone genes in teleosts and tetrapods due to their<br>distinct genomic environments – Insights into gonadotropin beta subunit evolution. General and<br>Comparative Endocrinology, 2011, 173, 253-258. | 0.8               | 50                 |
| 46 | Excitatory Action of GABA in the Terminal Nerve Gonadotropin-Releasing Hormone Neurons. Journal of Neurophysiology, 2010, 103, 1375-1384.                                                                                                           | 0.9               | 26                 |
| 47 | Neurobiological mechanisms underlying GnRH pulse generation by the hypothalamus. Brain Research, 2010, 1364, 103-115.                                                                                                                               | 1.1               | 155                |
| 48 | Electrophysiological Characteristics of Gonadotrophinâ€Releasing Hormone 1–3 Neurones: Insights<br>From a Study of Fish Brains. Journal of Neuroendocrinology, 2010, 22, 659-663.                                                                   | 1.2               | 16                 |
| 49 | Functional and evolutionary insights into vertebrate kisspeptin systems from studies of fish brain.<br>Journal of Fish Biology, 2010, 76, 161-182.                                                                                                  | 0.7               | 95                 |
| 50 | Neuromodulatory Effect of GnRH on the Synaptic Transmission of the Olfactory Bulbar Neural<br>Circuit in Goldfish, <i>Carassius auratus</i> . Journal of Neurophysiology, 2010, 104, 3540-3550.                                                     | 0.9               | 26                 |
| 51 | Electrophysiological Analysis of the Inhibitory Effects of FMRFamide-Like Peptides on the Pacemaker<br>Activity of Gonadotropin-Releasing Hormone Neurons. Journal of Neurophysiology, 2010, 104,<br>3518-3529.                                     | 0.9               | 41                 |
| 52 | Regular Pacemaker Activity Characterizes Gonadotropin-Releasing Hormone 2 Neurons Recorded from<br>Green Fluorescent Protein-Transgenic Medaka. Endocrinology, 2010, 151, 695-701.                                                                  | 1.4               | 34                 |
| 53 | Hypothalamic Kiss1 but Not Kiss2 Neurons Are Involved in Estrogen Feedback in Medaka (Oryzias) Tj ETQq1 1 (                                                                                                                                         | ).784314 r<br>1.4 | gBT /Overloc<br>94 |
| 54 | Biochemical and Immunohistochemical Analyses of a GnRH-like Peptide in the Neural Ganglia of the                                                                                                                                                    | 0.3               | 22                 |

| Pacific Abalone <i>Haliotis Discus Hannai </i> (Gastropoda). Zoological Science, 2010, 27, 656- |                                                                                                                                           |               |                       |                    |    |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------|--------------------|----|
|                                                                                                 | acific Abalone <i>Haliotis Discus Hannai<th>&gt;(Gastropoda)</th><th>. Zoological Science,</th><th>, 2010, 27, 656-66</th><th>1.</th></i> | >(Gastropoda) | . Zoological Science, | , 2010, 27, 656-66 | 1. |

0.322

| #  | Article                                                                                                                                                                                                                                                               | IF                    | CITATIONS     |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------|
| 55 | Biochemical and Lmmunohistochemical Analyses of GnRH-like Peptides in the Nerve Ganglion of the<br>Chiton, <i>Acanthopleura japonica</i> . Zoological Science, 2010, 27, 924-930.                                                                                     | 0.3                   | 7             |
| 56 | A curvature controlled flexible silicon micro electrode array to wrap neurons for signal analysis. ,<br>2009, , .                                                                                                                                                     |                       | 1             |
| 57 | The Role of the Terminal Nerve and GnRH in Olfactory System Neuromodulation. Zoological Science, 2009, 26, 669-680.                                                                                                                                                   | 0.3                   | 40            |
| 58 | Biochemical Analysis and Immunohistochemical Examination of a GnRH-like Immunoreactive Peptide in<br>the Central Nervous System of a Decapod Crustacean, the Kuruma Prawn ( <i>Marsupenaeus) Tj ETQq0 0 0 rgE</i>                                                     | 3T / <b>Ooe</b> rlock | k 107f 50 612 |
| 59 | Three Types of Gonadotrophinâ€Releasing Hormone Neurones and Steroid‣ensitive Sexually Dimorphic<br>Kisspeptin Neurones in Teleosts. Journal of Neuroendocrinology, 2009, 21, 334-338.                                                                                | 1.2                   | 61            |
| 60 | Primary Culture of the Isolated Terminal Nerveâ€Conadotrophinâ€Releasing Hormone Neurones Derived<br>From Adult Teleost (Dwarf Gourami, <i>Colisa Ialia</i> ) Brain For the Study of Peptide Release<br>Mechanisms. Journal of Neuroendocrinology, 2009, 21, 489-505. | 1.2                   | 7             |
| 61 | Possible Role of Oestrogen in Pubertal Increase of <i>Kiss1</i> /Kisspeptin Expression in Discrete<br>Hypothalamic Areas of Female Rats. Journal of Neuroendocrinology, 2009, 21, 527-537.                                                                            | 1.2                   | 110           |
| 62 | Calcium oscillations in the olfactory nonsensory cells of the goldfish, Carassius auratus. Biochimica<br>Et Biophysica Acta - General Subjects, 2009, 1790, 1681-1688.                                                                                                | 1.1                   | 5             |
| 63 | Interaction between neuropeptide Y immunoreactive neurons and galanin immunoreactive neurons in the brain of the masu salmon, Oncorhynchus masou. Neuroscience Letters, 2009, 462, 33-38.                                                                             | 1.0                   | 11            |
| 64 | Visualization of secretory vesicles in the terminal nerve (TN)-gonadotropin releasing hormone (GnRH)<br>neurons by single cell electroporation. Neuroscience Research, 2009, 65, S221.                                                                                | 1.0                   | 0             |
| 65 | 1. Neuropeptides controlling reproductive function. Nippon Suisan Gakkaishi, 2009, 75, 856-857.                                                                                                                                                                       | 0.0                   | 0             |
| 66 | Immunohistochemical localization of a GnRH-like peptide in the brain of the cephalopod spear-squid,<br>Loligo bleekeri. General and Comparative Endocrinology, 2008, 156, 277-284.                                                                                    | 0.8                   | 18            |
| 67 | Identification and Expression Analysis of Peroxisome Proliferator-Activated Receptors cDNA in a<br>Reptile, the Leopard Gecko (Eublepharis macularius). Zoological Science, 2008, 25, 492-502.                                                                        | 0.3                   | 1             |
| 68 | Identification of KiSS-1 Product Kisspeptin and Steroid-Sensitive Sexually Dimorphic Kisspeptin<br>Neurons in Medaka (Oryzias latipes). Endocrinology, 2008, 149, 2467-2476.                                                                                          | 1.4                   | 209           |
| 69 | Coordinated Synchronization in the Electrically Coupled Network of Terminal Nerve<br>Gonadotropin-Releasing Hormone Neurons as Demonstrated by Double Patch-Clamp Study.<br>Endocrinology, 2008, 149, 3540-3548.                                                      | 1.4                   | 18            |
| 70 | Hofmeister Effect Underlying the Quiescence of Sperm Motility in the Vas Deferens of the Viviparous guppy Poecilia reticulata. Zoological Science, 2007, 24, 1259-1265.                                                                                               | 0.3                   | 0             |
| 71 | Ion Channels and Their Neural Functions: Contribution to General Problems from Studies of Brains in<br>Non-Mammalian Species. Brain, Behavior and Evolution, 2007, 69, 122-131.                                                                                       | 0.9                   | 0             |
| 72 | Immunohistochemical localization and ontogenic development of prolactin-releasing peptide in the<br>brain of the ovoviviparous fish species Poecilia reticulata (guppy). Neuroscience Letters, 2007, 413,<br>206-209.                                                 | 1.0                   | 21            |

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Immunohistochemical localization of orexin/hypocretin-like immunoreactive peptides and<br>melanin-concentrating hormone in the brain and pituitary of medaka. Neuroscience Letters, 2007, 427,<br>16-21.                                  | 1.0  | 50        |
| 74 | Innate versus learned odour processing in the mouse olfactory bulb. Nature, 2007, 450, 503-508.                                                                                                                                           | 13.7 | 596       |
| 75 | Isolated primary culture of the terminal nerve (TN)-GnRH neurons derived from the brain of a tropical teleost. Neuroscience Research, 2007, 58, S222.                                                                                     | 1.0  | 0         |
| 76 | Sexually dimorphic metastin neurons in medaka brain. Neuroscience Research, 2007, 58, S222.                                                                                                                                               | 1.0  | 0         |
| 77 | Terminal Nerve Gonadotrophin-Releasing Hormone (GnRH) Neurones Express Multiple GnRH Receptors<br>in a Teleost, the Dwarf Gourami (Colisa Ialia). Journal of Neuroendocrinology, 2007, 19, 475-479.                                       | 1.2  | 19        |
| 78 | Neuromodulatory Functions of Terminal Nerveâ€GnRH Neurons. Fish Physiology, 2006, 25, 455-503.                                                                                                                                            | 0.2  | 11        |
| 79 | Odorant Receptor Map in the Mouse Olfactory Bulb: In Vivo Sensitivity and Specificity of<br>Receptor-Defined Glomeruli. Neuron, 2006, 52, 857-869.                                                                                        | 3.8  | 172       |
| 80 | Immunocytochemical localization and ontogenic development of ?-melanocyte-stimulating hormone<br>(?-MSH) in the brain of a pleuronectiform fish, barfin flounder. Cell and Tissue Research, 2005, 320,<br>127-134.                        | 1.5  | 30        |
| 81 | Chaotropic ions and multivalent ions activate sperm in the viviparous fish guppy Poecilia reticulata.<br>Biochimica Et Biophysica Acta - General Subjects, 2005, 1724, 173-180.                                                           | 1.1  | 19        |
| 82 | Different Modes of Gonadotropin-Releasing Hormone (GnRH) Release from Multiple GnRH Systems as<br>Revealed by Radioimmunoassay Using Brain Slices of a Teleost, the Dwarf Gourami (Colisa Ialia).<br>Endocrinology, 2004, 145, 2092-2103. | 1.4  | 30        |
| 83 | Selective Modulation of Voltage-Gated Calcium Channels in the Terminal Nerve<br>Gonadotropin-Releasing Hormone Neurons of a Teleost, the Dwarf Gourami (Colisa Ialia).<br>Endocrinology, 2004, 145, 4489-4499.                            | 1.4  | 14        |
| 84 | Ontogenic Development of Three GnRH Systems in the Brain of a Pleuronectiform Fish, Barfin<br>Flounder. Zoological Science, 2004, 21, 311-317.                                                                                            | 0.3  | 10        |
| 85 | Strategies for Sperm Chemotaxis in the Siphonophores and Ascidians: A Numerical Simulation Study.<br>Biological Bulletin, 2004, 206, 95-102.                                                                                              | 0.7  | 21        |
| 86 | GnRH systems in masu salmon and barfin flounder. Fish Physiology and Biochemistry, 2003, 28, 19-22.                                                                                                                                       | 0.9  | 2         |
| 87 | Existence of multiple isoforms of GnRH ligands and receptors in the dwarf gourami, Colisa lalia. Fish<br>Physiology and Biochemistry, 2003, 28, 41-42.                                                                                    | 0.9  | 1         |
| 88 | Immunocytochemical localization and ontogenic development of melanin-concentrating hormone in the brain of a pleuronectiform fish, the barfin flounder. Cell and Tissue Research, 2003, 311, 71-77.                                       | 1.5  | 46        |
| 89 | Glutamate receptors in the terminal nerve gonadotropin-releasing hormone neurons of the dwarf gourami (teleost). Neuroscience Letters, 2003, 345, 113-116.                                                                                | 1.0  | 13        |
| 90 | Slow removal of Na + channel inactivation underlies the temporal filtering property in the teleost thalamic neurons. Journal of Physiology, 2002, 539, 743-753.                                                                           | 1.3  | 8         |

| #   | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Physiology and release activity of GnRH neurons. Progress in Brain Research, 2002, 141, 259-281.                                                                                                                                            | 0.9 | 48        |
| 92  | Mechanisms of the Modulation of Pacemaker Activity by GnRH Peptides in the Terminal Nerve-GnRH<br>Neurons. Zoological Science, 2002, 19, 111-128.                                                                                           | 0.3 | 28        |
| 93  | The terminal nerve ganglion cells project to the olfactory mucosa in the dwarf gourami.<br>Neuroscience Research, 2002, 44, 337-341.                                                                                                        | 1.0 | 37        |
| 94  | Three GnRH systems in the brain and pituitary of a pleuronectiform fish, the barfin flounder Verasper moseri. Cell and Tissue Research, 2002, 309, 323-329.                                                                                 | 1.5 | 56        |
| 95  | M6P/IGF2R tumor suppressor gene mutated in hepatocellular carcinomas in Japan. Hepatology, 2002, 35, 1153-1163.                                                                                                                             | 3.6 | 58        |
| 96  | Amperometric recording of gonadotropin-releasing hormone release activity in the pituitary of the dwarf gourami (teleosat) brain-pituitary slices. Neuroscience Letters, 2001, 299, 121-124.                                                | 1.0 | 15        |
| 97  | Erratum to "Amperometric recording of gonadotropin-releasing hormone release activity in the pituitary of the dwarf gourami (teleost) brain-pituitary slices―[Neurosci. Lett. 299 (2001) 121-l24].<br>Neuroscience Letters, 2001, 305, 207. | 1.0 | 0         |
| 98  | Imaging postsynaptic activities of teleost thalamic neurons at single cell resolution using a voltage-sensitive dye. Neuroscience Letters, 2001, 312, 17-20.                                                                                | 1.0 | 6         |
| 99  | Transmembrane Cell Signaling for the Initiation of Trout Sperm Motility: Roles of Ion Channels and Membrane Hyperpolarization for Cyclic AMP Synthesis. Zoological Science, 2001, 18, 919-928.                                              | 0.3 | 40        |
| 100 | Effects of Characteristic Dendritic Tip Geometry on the Electrical Properties of Teleost Thalamic<br>Neurons. Journal of Neurophysiology, 2001, 85, 2289-2292.                                                                              | 0.9 | 3         |
| 101 | Encoding of Different Aspects of Afferent Activities by Two Types of Cells in the Corpus<br>Glomerulosum of a Teleost Brain. Journal of Neurophysiology, 2001, 85, 1167-1177.                                                               | 0.9 | 12        |
| 102 | Effects of Olfactory Tract Section on the Immunohistochemical Distribution of Brain GnRH Fibers in the Female Goldfish, Carassius auratus. Zoological Science, 2001, 18, 241-248.                                                           | 0.3 | 9         |
| 103 | Cell Signalings for Activation of Motility and Chemotaxis in the Sperm of Ciona. , 2001, , 86-91.                                                                                                                                           |     | 0         |
| 104 | Modulation of Pacemaker Activity by Salmon Gonadotropin-Releasing Hormone (sGnRH) in Terminal<br>Nerve (TN)-GnRH Neurons. Journal of Neurophysiology, 2000, 83, 3196-3200.                                                                  | 0.9 | 52        |
| 105 | Light-sensitive voltage responses in the neurons of the cerebral ganglion of Ciona savignyi<br>(Chordata: Ascidiacea). Biological Bulletin, 2000, 198, 26-28.                                                                               | 0.7 | 19        |
| 106 | Tropical Fish Brain as a Model System for the Neurobiological Study of Peptidergic Neurons. Seibutsu<br>Butsuri, 2000, 40, 254-257.                                                                                                         | 0.0 | 0         |
| 107 | Characterization of K+ Currents Underlying Pacemaker Potentials of Fish Gonadotropin-Releasing<br>Hormone Cells. Journal of Neurophysiology, 1999, 81, 643-653.                                                                             | 0.9 | 21        |
| 108 | Membrane Hyperpolarization by Sperm-Activating and -Attracting Factor Increases cAMP Level and<br>Activates Sperm Motility in the Ascidian Ciona intestinalis. Developmental Biology, 1999, 213, 246-256.                                   | 0.9 | 58        |

| #   | Article                                                                                                                                                                                                                                            | IF              | CITATIONS    |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 109 | GnRH-Immunoreactive Neuronal System in the Presumptive Ancestral Chordate,Ciona intestinalis(Ascidian). General and Comparative Endocrinology, 1998, 112, 426-432.                                                                                 | 0.8             | 65           |
| 110 | Introduction. General and Comparative Endocrinology, 1998, 112, 275.                                                                                                                                                                               | 0.8             | 0            |
| 111 | Ontogenic development of salmon GnRH and chicken GnRH-II systems in the brain of masu salmon () Tj ETQq1 1                                                                                                                                         | 0.784314<br>1.5 | rgBT /Overic |
| 112 | Preoptic gonadotropin-releasing hormone (GnRH) neurons innervate the pituitary in teleosts.<br>Neuroscience Research, 1998, 31, 31-38.                                                                                                             | 1.0             | 74           |
| 113 | Gonadotropin-releasing hormone neurons in the gourami midbrain: a double labeling study by immunocytochemistry and tracer injection. Neuroscience Letters, 1998, 240, 50-52.                                                                       | 1.0             | 21           |
| 114 | Lesions of Gonadotropin-Releasing Hormone-Immunoreactive Terminal Nerve Cells: Effects on the Reproductive Behavior of Male Dwarf Gouramis. Neuroendocrinology, 1997, 65, 403-412.                                                                 | 1.2             | 161          |
| 115 | Characterization of TTX-resistant persistent Na+ current underlying pacemaker potentials of fish<br>gonadotropin-releasing hormone (GnRH) neurons. Journal of Neurophysiology, 1996, 75, 2397-2404.                                                | 0.9             | 37           |
| 116 | Multiple gonadotropin-releasing hormone (GnRH)-immunoreactive systems in the brain of the dwarf<br>gourami,Colisa Ialia: Immunohistochemistry and radioimmunoassay. Journal of Comparative<br>Neurology, 1995, 355, 354-368.                       | 0.9             | 115          |
| 117 | Immunocytochemical localization of sGnRH and cGnRH-II in the brain of goldfish,Carassius auratus.<br>Journal of Comparative Neurology, 1995, 356, 72-82.                                                                                           | 0.9             | 137          |
| 118 | Tetrodotoxin-resistant persistent Na+ current underlying pacemaker potentials of fish<br>gonadotrophin-releasing hormone neurones Journal of Physiology, 1995, 482, 1-6.                                                                           | 1.3             | 34           |
| 119 | Immunohistochemical double-labeling study of gonadotropin-releasing hormone<br>(GnRH)-immunoreactive cells and oxytocin-immunoreactive cells in the preoptic area of the dwarf<br>gourami, Colisa lalia. Neuroscience Research, 1994, 20, 189-193. | 1.0             | 17           |
| 120 | Gonadotropin-releasing hormone (GnRH)-immunoreactive terminal nerve cells have intrinsic rhythmicity and project widely in the brain. Journal of Neuroscience, 1993, 13, 2161-2176.                                                                | 1.7             | 148          |
| 121 | Ultrastructural characterization of gonadotropin-releasing hormone (GnRH)-immunoreactive terminal nerve cells in the dwarf gourami. Neuroscience Letters, 1992, 140, 200-202.                                                                      | 1.0             | 26           |
| 122 | Gonadotropin-releasing hormone (GnRH) cells of the terminal nerve as a model neuromodulator system. Neuroscience Letters, 1992, 142, 119-122.                                                                                                      | 1.0             | 64           |
| 123 | Intracellular recording and staining of terminal nerve cells in the brain of the dwarf gourami in<br>vitro. Neuroscience Research Supplement: the Official Journal of the Japan Neuroscience Society, 1991,<br>14, S114.                           | 0.0             | 0            |
| 124 | The glossopharyngeal nerve of the axolotl labeled with carbocyanine dye (dil). Neuroscience Letters, 1991, 131, 125-128.                                                                                                                           | 1.0             | 4            |
| 125 | Ultrastructure of the ganglion cells of the terminal nerve in the dwarf gourami (Colisa lalia).<br>Journal of Comparative Neurology, 1991, 304, 161-171.                                                                                           | 0.9             | 37           |
| 126 | Immunocytochemical demonstration of salmon GnRH and chicken GnRH-II in the brain of masu salmon,Oncorhynchus masou. Journal of Comparative Neurology, 1991, 314, 587-597.                                                                          | 0.9             | 187          |

| #   | Article                                                                                                                                                                                                                                                                                    | IF                 | CITATIONS                |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------|
| 127 | Gonadotropin-releasing hormone (GnRH) immunoreactive system in the brain of the dwarf gourami (Colisa Ialia) as revealed by light microscopic immunocytochemistry using a monoclonal antibody to common amino acid sequence of GnRH. Journal of Comparative Neurology, 1990, 300, 511-522. | 0.9                | 88                       |
| 128 | Location of forelimb motoneurons in the Japanese toad (Bufo japonicus): A horseradish peroxidase study. Journal of Comparative Neurology, 1989, 286, 376-383.                                                                                                                              | 0.9                | 7                        |
| 129 | Horseradish peroxidase study of the localization of motoneurons in the accessory nucleus (XI) of the<br>Japanese toad. Neuroscience Letters, 1987, 79, 241-245.                                                                                                                            | 1.0                | 0                        |
| 130 | Distribution of motoneurons involved in the prey-catching behavior in the Japanese toad,Bufo<br>japonicus. Brain Research, 1987, 410, 395-400.                                                                                                                                             | 1.1                | 21                       |
| 131 | Morphology and distribution of the motor neurons of the accessory nerve (nXI) in the Japanese toad:<br>a cobaltic lysine study. Brain Research, 1987, 400, 383-388.                                                                                                                        | 1.1                | 17                       |
| 132 | Morphology and distribution of the preganglionic parasympathetic neurons of the facial,<br>glossopharyngeal and vagus nerves in the Japanese toad: a cobaltic lysine study. Brain Research, 1987,<br>400, 389-395.                                                                         | 1.1                | 14                       |
| 133 | An improved method for correlative light and electron microscopic examination of cobaltic-lysine-labelled neurons. Neuroscience Letters, 1987, 73, 187-191.                                                                                                                                | 1.0                | 2                        |
| 134 | Cobaltic lysine study of the morphology and distribution of the cranial nerve efferent neurons<br>(motoneurons and preganglionic parasympathetic neurons) and rostral spinal motoneurons in the<br>Japanese toad. Journal of Comparative Neurology, 1987, 259, 400-423.                    | 0.9                | 42                       |
| 135 | Retinopetal projections from a subpopulation of ganglion cells of the nervus terminalis in the dwarf gourami (Colisa Ialia). Brain Research, 1986, 367, 341-345.                                                                                                                           | 1.1                | 34                       |
| 136 | Descending pathways to the spinal cord in the himé salmon (landlocked red salmon,oncorhynchus) Tj ETQq0 C                                                                                                                                                                                  | 0 rgBT /C          | Verlock 10 T             |
| 137 | Ascending pathways from the spinal cord in the himé salmon (landlocked red salmon,oncorhynchus) Tj ETQq1                                                                                                                                                                                   | 1 8:7843           | 14 <sub>2</sub> gBT /Ove |
| 138 | Efferents from the supracommissural ventral telencephalon in the hime salmon (landlocked red) Tj ETQq0 0 0 rgE<br>55-61.                                                                                                                                                                   | 3T /Overloo<br>1.4 | ck 10 Tf 50 3<br>27      |
| 139 | An HRP study of afferent connections of the supracommissural ventral telencephalon and the medial preoptic area in himeÂ'salmon (landlocked red salmon,oncorhynchus nerka). Brain Research, 1985, 361, 162-177.                                                                            | 1.1                | 41                       |
| 140 | Sexually dimorphic muscles in the forelimb of the Japanese toad,Bufo japonicus. Journal of Morphology, 1984, 180, 297-308.                                                                                                                                                                 | 0.6                | 51                       |
| 141 | Telencephalic and preoptic areas integrate sexual behavior in hime salmon (landlocked red salmon,) Tj ETQq1 1 0<br>1984, 33, 441-447.                                                                                                                                                      | .784314 r<br>1.0   | gBT /Overloc<br>140      |
| 142 | Involvement of the telencephalic hemispheres and the preoptic area in sexual behavior of the male goldfish, Carassius auratus: a brain-lesion study. Behavioral and Neural Biology, 1984, 40, 70-86.                                                                                       | 2.3                | 81                       |
| 143 | Golgi, electron-microscopic and combined golgi-electron-microscopic studies of the mitral cells in the goldfish olfactory bulb. Neuroscience, 1983, 8, 723-742.                                                                                                                            | 1.1                | 40                       |
| 144 | Telencephalic afferents in the goldfish: An anterograde degeneration study. Brain Research Bulletin,<br>1981, 7, 391-394.                                                                                                                                                                  | 1.4                | 6                        |

| #   | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | The origin of the centrifugal fibers to the olfactory bulb in the goldfish,Carassius auratus: An<br>experimental study using the fluorescent dye primuline as a retrograde tracer. Brain Research, 1980,<br>185, 215-225. | 1.1 | 52        |