Elin Röös

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4062826/publications.pdf

Version: 2024-02-01

50 papers

2,409 citations

186209
28
h-index

47 g-index

50 all docs 50 docs citations

50 times ranked

2867 citing authors

#	Article	IF	Citations
1	Time-dependent climate impact of beef production – can carbon sequestration in soil offset enteric methane emissions?. Journal of Cleaner Production, 2022, 331, 129948.	4.6	6
2	Diet cost and quality using the Healthy Eating Index-2015 in adults from urban and rural areas of Mexico. Public Health Nutrition, 2022, 25, 2554-2565.	1.1	2
3	Delivering "less but better―meat in practice—a case study of a farm in agroecological transition. Agronomy for Sustainable Development, 2022, 42, 1.	2.2	4
4	Meat tastes good, legumes are healthy and meat substitutes are still strange - The practice of protein consumption among Swedish consumers. Appetite, 2022, 174, 106002.	1.8	15
5	Smaller farm size and ruminant animals are associated with increased supply of non-provisioning ecosystem services. Ambio, 2022, 51, 2025-2042.	2.8	9
6	Sustainability of Diets in Mexico: Diet Quality, Environmental Footprint, Diet Cost, and Sociodemographic Factors. Frontiers in Nutrition, 2022, 9, .	1.6	9
7	Multi-criteria evaluation of plant-based foods –use of environmental footprint and LCA data for consumer guidance. Journal of Cleaner Production, 2021, 280, 124721.	4.6	21
8	Moving beyond organic $\hat{a}\in$ A food system approach to assessing sustainable and resilient farming. Global Food Security, 2021, 28, 100487.	4.0	22
9	Taxing food consumption to reduce environmental impacts – Identification of synergies and goal conflicts. Food Policy, 2021, 101, 102090.	2.8	13
10	Towards sustainable consumption of legumes: How origin, processing and transport affect the environmental impact of pulses. Sustainable Production and Consumption, 2021, 27, 496-508.	5.7	30
11	The role of fats in the transition to sustainable diets. Lancet Planetary Health, The, 2021, 5, e644-e653.	5.1	23
12	A life cycle sustainability assessment of organic and conventional pork supply chains in Sweden. Sustainable Production and Consumption, 2021, 28, 21-38.	5.7	44
13	Halting European Union soybean feed imports favours ruminants over pigs and poultry. Nature Food, 2021, 2, 38-46.	6.2	40
14	Less meat, more legumes: prospects and challenges in the transition toward sustainable diets in Sweden. Renewable Agriculture and Food Systems, 2020, 35, 192-205.	0.8	64
15	The role of reducing food waste for resilient food systems. Ecosystem Services, 2020, 45, 101140.	2.3	48
16	Why statistical testing and confidence intervals should not be used in comparative life cycle assessments based on Monte Carlo simulations. International Journal of Life Cycle Assessment, 2020, 25, 2101-2105.	2.2	23
17	†Less but better' meat is a sustainability message in need of clarity. Nature Food, 2020, 1, 520-522.	6.2	34
18	Tensions in future development of organic productionâ€"views of stakeholders on Organic 3.0. Organic Agriculture, 2020, 10, 509-519.	1,2	3

#	Article	IF	Citations
19	Interplay of trade and food system resilience: Gains on supply diversity over time at the cost of trade independency. Global Food Security, 2020, 24, 100360.	4.0	88
20	Benchmarking the Swedish Diet Relative to Global and National Environmental Targetsâ€"Identification of Indicator Limitations and Data Gaps. Sustainability, 2020, 12, 1407.	1.6	43
21	Soil carbon sequestration in grazing systems: managing expectations. Climatic Change, 2020, 161, 385-391.	1.7	29
22	How well is farmers' social situation captured by sustainability assessment tools? A Swedish case study. International Journal of Sustainable Development and World Ecology, 2019, 26, 268-281.	3.2	31
23	The carbon footprint of breastmilk substitutes in comparison with breastfeeding. Journal of Cleaner Production, 2019, 222, 436-445.	4.6	39
24	Determining the climate impact of food for use in a climate taxâ€"design of a consistent and transparent model. International Journal of Life Cycle Assessment, 2019, 24, 1715-1728.	2.2	39
25	Resource-efficient use of land and animalsâ€"Environmental impacts of food systems based on organic cropping and avoided food-feed competition. Land Use Policy, 2019, 85, 63-72.	2.5	37
26	Design of a climate tax on food consumption: Examples of tomatoes and beef in Sweden. Journal of Cleaner Production, 2019, 211, 1576-1585.	4.6	15
27	Evaluating Consumer Understanding of the Swedish Meat Guide—A Multi-layered Environmental Information Tool Communicating Trade-offs When Choosing Food. Environmental Communication, 2019, 13, 87-103.	1.2	8
28	Risks and opportunities of increasing yields in organic farming. A review. Agronomy for Sustainable Development, 2018, 38, 1.	2.2	149
29	Controlling Sustainability in Swedish Beef Production: Outcomes for Farmers and the Environment. Food Ethics, 2018, 2, 39-55.	1.2	3
30	Designing a future food vision for the Nordics through a participatory modeling approach. Agronomy for Sustainable Development, 2018, 38, 1.	2.2	23
31	Identification and modelling of risk factors for food waste generation in school and pre-school catering units. Waste Management, 2018, 77, 172-184.	3.7	36
32	Defining a land boundary for sustainable livestock consumption. Global Change Biology, 2018, 24, 4185-4194.	4.2	205
33	Protein futures for Western Europe: potential land use and climate impacts in 2050. Regional Environmental Change, 2017, 17, 367-377.	1.4	60
34	Greedy or needy? Land use and climate impacts of food in 2050 under different livestock futures. Global Environmental Change, 2017, 47, 1-12.	3.6	225
35	The Framing of Sustainability in Sustainability Assessment Frameworks for Agriculture. Sociologia Ruralis, 2017, 57, 378-395.	1.8	34
36	Future Nordic Diets. TemaNord, 2017, , .	1.3	5

#	Article	IF	Citations
37	Fear of climate change consequences and predictors of intentions to alter meat consumption. Food Policy, 2016, 62, 151-160.	2.8	60
38	Producing oat drink or cow's milk on a Swedish farm — Environmental impacts considering the service of grazing, the opportunity cost of land and the demand for beef and protein. Agricultural Systems, 2016, 142, 23-32.	3.2	30
39	Limiting livestock production to pasture and by-products in a search for sustainable diets. Food Policy, 2016, 58, 1-13.	2.8	100
40	Evaluating the sustainability of diets–combining environmental and nutritional aspects. Environmental Science and Policy, 2015, 47, 157-166.	2.4	83
41	Communicating the environmental impact of meat production: challenges in the development of a Swedish meat guide. Journal of Cleaner Production, 2014, 73, 154-164.	4.6	53
42	Sustainable meat consumption: A quantitative analysis of nutritional intake, greenhouse gas emissions and land use from a Swedish perspective. Food Policy, 2014, 47, 81-90.	2.8	84
43	Carbon Footprint of Food Products. Ecoproduction, 2014, , 85-112.	0.8	20
44	Effect of eating seasonal on the carbon footprint of Swedish vegetable consumption. Journal of Cleaner Production, 2013, 59, 63-72.	4.6	63
45	Can carbon footprint serve as an indicator of the environmental impact of meat production?. Ecological Indicators, 2013, 24, 573-581.	2.6	153
46	EU sustainability criteria for biofuels: uncertainties in GHG emissions from cultivation. Biofuels, 2012, 3, 399-411.	1.4	8
47	Challenges of carbon labelling of food products: a consumer research perspective. British Food Journal, 2011, 113, 982-996.	1.6	97
48	Uncertainties in the carbon footprint of refined wheat products: a case study on Swedish pasta. International Journal of Life Cycle Assessment, 2011, 16, 338-350.	2.2	75
49	Uncertainties in the carbon footprint of food products: a case study on table potatoes. International Journal of Life Cycle Assessment, 2010, 15, 478-488.	2.2	101
50	On-farm experiments on cultivation of grain legumes for food $\hat{a} \in \hat{a}$ outcomes from a farmer $\hat{a} \in \hat{a}$ researcher collaboration. Renewable Agriculture and Food Systems, 0, , 1-11.	0.8	3