Despina Vamvuka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4062555/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Investigating potential co-firing of corn cobs with lignite for energy production. Thermal analysis and behavior of ashes. International Journal of Coal Preparation and Utilization, 2022, 42, 2493-2504.	2.1	11
2	Combustion performance and kinetic modeling of lignite blended with torrefied biomass of different origin. International Journal of Green Energy, 2022, 19, 1221-1229.	3.8	1
3	Investigating the Valorisation of Refused Derived Fuel for Energetic Uses Through Its Co-Gasification with Woody Wastes. World Journal of Environmental Biosciences, 2022, 11, 37-44.	0.1	1
4	Assessment of Potential Impacts of Peach Kernels and Cardoon as Co-Firing Fuels with Lignite Through Experiments on Reactivity and Ash Behavior. Recent Innovations in Chemical Engineering, 2021, 13, 353-365.	0.4	0
5	Increasing the reactivity of waste biochars during their co-gasification with carbon dioxide using catalysts and bio-oils. Thermochimica Acta, 2021, 704, 179015.	2.7	14
6	Evaluation of Pig Manure for Environmental or Agricultural Applications through Gasification and Soil Leaching Experiments. Applied Sciences (Switzerland), 2021, 11, 12011.	2.5	3
7	Evaluation of municipal wastes as secondary fuels through co-combustion with woody biomass in a fluidized bed reactor. Journal of the Energy Institute, 2020, 93, 272-280.	5.3	14
8	Control of the mobility of heavy metals in soil from disposal of bio-solid and olive by-product ashes using waste additives. Environmental Pollution, 2020, 266, 115136.	7.5	3
9	Recycling of Waste Materials for Stabilizing Ash from Co-Combustion of Municipal Solid Wastes with an Olive By-Product: Soil Leaching Experiments. Soil Systems, 2020, 4, 34.	2.6	1
10	The impact of a combined pre-treatment on the combustion performance of various biomass wastes and their blends with lignite. Thermochimica Acta, 2020, 688, 178599.	2.7	24
11	Investigating the Suitability of Grape Husks Biochar, Municipal Solid Wastes Compost and Mixtures of Them for Agricultural Applications to Mediterranean Soils. Resources, 2020, 9, 33.	3.5	8
12	Use of selective grinding for upgrading quality of lignites from Greece and for reducing CO2 emissions. International Journal of Coal Preparation and Utilization, 2020, , 1-11.	2.1	0
13	Physically Activated Agricultural Waste Biochars for Production of Pollutant Adsorbents. Journal of Chemical Engineering Research Updates, 2020, 7, 6-15.	0.1	1
14	Co-combustion characteristics of lignite/woody biomass blends. Reactivity and fusibility assessment. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2019, , 1-15.	2.3	6
15	Combustion Performance of Sludge From a Wastewater Treatment Plant in Fluidized Bed. Factorial Modeling and Optimization of Emissions. Frontiers in Energy Research, 2019, 7, .	2.3	14
16	Evaluation of gaseous and solid products from the pyrolysis of waste biomass blends for energetic and environmental applications. Fuel, 2019, 236, 574-582.	6.4	33
17	Thermal Behaviour and Reactivity of Swine Sludge and Olive By-Products During Co-pyrolysis and Co-combustion. Waste and Biomass Valorization, 2019, 10, 1433-1442.	3.4	6
18	Valorization of Meat and Bone Meal through pyrolysis for soil amendment or lead adsorption from wastewaters. Food and Bioproducts Processing, 2018, 109, 148-157.	3.6	32

DESPINA VAMVUKA

#	Article	IF	CITATIONS
19	Thermal decomposition behavior, characterization and evaluation of pyrolysis products of agricultural wastes. Journal of the Energy Institute, 2018, 91, 951-961.	5.3	18
20	Study of co-pyrolysis of olive kernel with waste biomass using TGA/DTG/MS. Thermochimica Acta, 2018, 670, 44-54.	2.7	26
21	Slagging and Fouling Propensities of Ashes from Urban and Industrial Wastes. Recent Innovations in Chemical Engineering, 2018, 11, 145-158.	0.4	5
22	Characterization and evaluation of fly and bottom ashes from combustion of residues from vineyards and processing industry. Journal of the Energy Institute, 2017, 90, 574-587.	5.3	21
23	Comparison of ashes from fixed/fluidized bed combustion of swine sludge and olive by-products. Properties, environmental impact and potential uses. Renewable Energy, 2017, 112, 74-83.	8.9	15
24	Comparative life cycle assessment of pistachio, almond and apple production. Information Processing in Agriculture, 2017, 4, 188-198.	4.1	25
25	Investigation of the Combustion Performance of Residues from Vineyards and Processing Industry via Fluidized Bed Experiments, Factorial Design, and Modeling. Combustion Science and Technology, 2017, 189, 890-907.	2.3	3
26	Combustion behaviour of Olive pruning/animal manure blends in a fluidized bed combustor. Heliyon, 2017, 3, e00385.	3.2	6
27	Evaluation of Meat and Bone Meal as a Secondary Fuel with Olive Byproducts in a Fluidized Bed Unit. Performance and Environmental Impact of Ashes. Energy & Fuels, 2017, 31, 7214-7222.	5.1	6
28	Potential of poor lignite and Biomass blends in energy production. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 2079-2085.	2.3	8
29	Thermal Valorization of an Animal Sludge for Energy Recovery via Co-Combustion with Olive Kernel in a Fluidized Bed Unit: Optimization of Emissions. Energy & Fuels, 2016, 30, 5825-5834.	5.1	10
30	Kinetic modeling of five sustainable energy crops as potential sources of bioenergy. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 1812-1818.	2.3	8
31	Evaluation of urban wastes as promising co-fuels for energy production – A TG/MS study. Fuel, 2015, 147, 170-183.	6.4	35
32	Assessment of Pistachio Shell Biochar Quality and Its Potential for Adsorption of Heavy Metals. Waste and Biomass Valorization, 2015, 6, 805-816.	3.4	110
33	Gasification Reactivity and Mass Spectrometric Analysis of Gases of Energy Crop Chars under a CO ₂ Atmosphere. Energy & Fuels, 2015, 29, 3215-3223.	5.1	12
34	Development of a modified independent parallel reactions kinetic model and comparison with the distributed activation energy model for the pyrolysis of a wide variety of biomass fuels. Bioresource Technology, 2015, 197, 434-442.	9.6	42
35	Mediterranean agri-food processing wastes pyrolysis after pre-treatment and recovery of precursor materials: A TGA-based kinetic modeling study. Food Research International, 2015, 73, 44-51.	6.2	23
36	Study on Catalytic Combustion of Biomass Mixtures with Poor Coals. Combustion Science and Technology, 2014, 186, 68-82.	2.3	25

Despina Vamvuka

#	Article	IF	CITATIONS
37	Evaluation of ashes produced from fluidized bed combustion of residues from oranges' plantations and processing. Renewable Energy, 2014, 72, 336-343.	8.9	17
38	Comparative Study of Combustion Properties of Five Energy Crops and Greek Lignite. Energy & Fuels, 2012, 26, 869-878.	5.1	53
39	Gasification of Waste Biomass Chars by Carbon Dioxide via Thermogravimetry—Effect of Catalysts. Combustion Science and Technology, 2012, 184, 64-77.	2.3	22
40	Fluidized bed combustion of residues from oranges' plantations and processing. Renewable Energy, 2012, 44, 231-237.	8.9	12
41	Development of a Biomass-Fired Combustion Unit for Residential Heating. Combustion Science and Technology, 2011, 183, 764-778.	2.3	1
42	Combustion behaviour of biomass fuels and their blends with lignite. Thermochimica Acta, 2011, 526, 192-199.	2.7	144
43	Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA). Bioresource Technology, 2011, 102, 6230-6238.	9.6	419
44	Bio-oil, solid and gaseous biofuels from biomass pyrolysis processes-An overview. International Journal of Energy Research, 2011, 35, 835-862.	4.5	287
45	Gasification of waste biomass chars by carbon dioxide via thermogravimetry. Part I: Effect of mineral matter. Fuel, 2011, 90, 1120-1127.	6.4	55
46	Ash properties and environmental impact of various biomass and coal fuels and their blends. Fuel Processing Technology, 2011, 92, 570-581.	7.2	139
47	Effects of heating rate and water leaching of perennial energy crops on pyrolysis characteristics and kinetics. Renewable Energy, 2011, 36, 2433-2439.	8.9	86
48	Evaluation of production yield and thermal processing of switchgrass as a bio-energy crop for the Mediterranean region. Fuel Processing Technology, 2010, 91, 988-996.	7.2	46
49	Carbon Dioxide Emissions from Coal-Fired Power Plants in Greece in Relation to Mined Lignite Quality. Energy & Fuels, 2010, 24, 1396-1401.	5.1	9
50	Possibility of using paper sludge in co-firing applications. Fuel, 2009, 88, 637-643.	6.4	106
51	Comparative fixed/fluidized bed experiments for the thermal behaviour and environmental impact of olive kernel ash. Renewable Energy, 2009, 34, 158-164.	8.9	37
52	Ash effects during combustion of lignite/biomass blends in fluidized bed. Renewable Energy, 2009, 34, 2662-2671.	8.9	79
53	Lignite Quality Uncertainty Estimation for the Assessment of CO2 Emissions. Energy & Fuels, 2009, 23, 2103-2110.	5.1	12
54	Control methods for mitigating biomass ash-related problems in fluidized beds. Bioresource Technology, 2008, 99, 3534-3544.	9.6	145

DESPINA VAMVUKA

#	Article	IF	CITATIONS
55	A comparative reactivity and kinetic study on the combustion of coal–biomass char blends. Fuel, 2006, 85, 1186-1193.	6.4	185
56	The effect of mineral matter on the physical and chemical activation of low rank coal and biomass materials. Fuel, 2006, 85, 1763-1771.	6.4	129
57	Leaching of Toxic Elements from Lignite and Agroresidue Ashes in Cultivated Soils of Crete. Energy & Fuels, 2005, 19, 807-812.	5.1	16
58	Predicting the behaviour of ash from agricultural wastes during combustion. Fuel, 2004, 83, 2051-2057.	6.4	154
59	Combustion behavior of xylite/lignite mixtures. Carbon, 2004, 42, 351-359.	10.3	11
60	Pyrolysis characteristics and kinetics of biomass residuals mixtures with ligniteâ~†. Fuel, 2003, 82, 1949-1960.	6.4	426
61	Devolatilization and Combustion Kinetics of Low-Rank Coal Blends from Dynamic Measurements. Industrial & Engineering Chemistry Research, 2003, 42, 4732-4740.	3.7	31
62	Kinetic Modeling of Coal/Agricultural By-Product Blends. Energy & Fuels, 2003, 17, 549-558.	5.1	71
63	Energy Exploitation of Agricultural Residues in Crete. Energy Exploration and Exploitation, 2002, 20, 113-121.	2.3	24
64	Thermogravimetric studies of the behavior of lignite–biomass blends during devolatilization. Fuel Processing Technology, 2002, 77-78, 159-166.	7.2	162
65	Ash Quality of a Beneficiated Lignite from Ptolemais Basin, Northern Greece. Energy & Fuels, 2001, 15, 1181-1185.	5.1	12
66	The effect of chemical reagents on lignite flotation. International Journal of Mineral Processing, 2001, 61, 209-224.	2.6	89
67	A model of the combustion of a single small coal particle using kinetic parameters based on thermogravimetric analysis. International Journal of Energy Research, 1998, 22, 657-670.	4.5	16
68	Study on the Possibility of Recovering Lignites from Refused Innerburden. Energy Exploration and Exploitation, 1996, 14, 439-447.	2.3	1