
Anna A Kulminskaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4062258/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antibacterial Properties of Fucoidans from the Brown Algae Fucus vesiculosus L. of the Barents Sea. Biology, 2021, 10, 67.	1.3	33
2	The effect of polydisperse fucoidans from Fucus vesiculosus on Hep G2 and Chang liver cells. Bioactive Carbohydrates and Dietary Fibre, 2020, 21, 100209.	1.5	8
3	Branched architecture of fucoidan characterized by dynamic and static light scattering. Colloid and Polymer Science, 2020, 298, 1349-1359.	1.0	5
4	Nonspecific enzymatic hydrolysis of a highly ordered chitopolysaccharide substrate. Carbohydrate Research, 2020, 498, 108191.	1.1	7
5	A novel acidâ€ŧolerant βâ€xylanase from <i>Scytalidium candidum</i> 3C for the synthesis of <i>o</i> â€nitrophenyl xylooligosaccharides. Journal of Basic Microbiology, 2020, 60, 971-982.	1.8	2
6	Calcifying Bacteria Flexibility in Induction of CaCO3 Mineralization. Life, 2020, 10, 317.	1.1	15
7	Crystal and Supramolecular Structure of Bacterial Cellulose Hydrolyzed by Cellobiohydrolase from Scytalidium Candidum 3C: A Basis for Development of Biodegradable Wound Dressings. Materials, 2020, 13, 2087.	1.3	8
8	Microbial Sulfatases. Moscow University Chemistry Bulletin, 2018, 73, 139-151.	0.2	1
9	<i>Scytalidium candidum</i> 3C is a new name for the <i>Geotrichum candidum</i> Link 3C strain. Journal of Basic Microbiology, 2018, 58, 883-891.	1.8	7
10	Correlation of structure, function and protein dynamics in GH7 cellobiohydrolases from Trichoderma atroviride, T. reesei and T. harzianum. Biotechnology for Biofuels, 2018, 11, 5.	6.2	37
11	Heterologous expression in Pichia pastoris and biochemical characterization of the unmodified sulfatase from Fusarium proliferatum LE1. Protein Engineering, Design and Selection, 2017, 30, 571-571.	1.0	2
12	Heterologous expression in Pichia pastoris and biochemical characterization of the unmodified sulfatase from Fusarium proliferatum LE1. Protein Engineering, Design and Selection, 2017, 30, 477-488.	1.0	4
13	Characterization of a new α-l-fucosidase isolated from Fusarium proliferatum LE1 that is regioselective to α-(1Â→Â4)-l-fucosidic linkage in the hydrolysis of α-l-fucobiosides. Biochimie, 2017, 132, 54-65.	1.3	11
14	The 2.2â€Angstrom resolution crystal structure of the carboxyâ€ŧerminal region of ataxinâ€3. FEBS Open Bio, 2016, 6, 168-178.	1.0	12
15	Sequencing, biochemical characterization, crystal structure and molecular dynamics of cellobiohydrolase Cel7A from <i>Geotrichum candidum</i> 3C. FEBS Journal, 2015, 282, 4515-4537.	2.2	37
16	The method of integrated kinetics and its applicability to the exo-glycosidase-catalyzed hydrolysis of p-nitrophenyl glycosides. Carbohydrate Research, 2015, 412, 43-49.	1.1	4
17	α-Galactobiosyl units: thermodynamics and kinetics of their formation by transglycosylations catalysed by the GH36 α-galactosidase from Thermotoga maritima. Carbohydrate Research, 2015, 401, 115-121.	1.1	6
18	The novel strain <i>Fusarium proliferatum</i> LE1 (RCAM02409) produces α- <scp>L</scp> -fucosidase and arylsulfatase during the growth on fucoidan. Journal of Basic Microbiology, 2015, 55, 471-479.	1.8	17

#	Article	IF	CITATIONS
19	Xylan degradation improved by a combination of monolithic columns bearing immobilized recombinant βâ€xylosidase from <i>Aspergillus awamori</i> Xâ€100 and Grindamyl H121 βâ€xylanase. Biotechnology Journal, 2015, 10, 210-221.	1.8	6
20	Draft Genome Sequence of Geotrichum candidum Strain 3C. Genome Announcements, 2014, 2, .	0.8	9
21	Impact of an N-terminal extension on the stability and activity of the GH11 xylanase from Thermobacillus xylanilyticus. Journal of Biotechnology, 2014, 174, 64-72.	1.9	17
22	Improvement of the efficiency of transglycosylation catalyzed by α-galactosidase from Thermotoga maritima by protein engineering. Biochemistry (Moscow), 2013, 78, 1112-1123.	0.7	13
23	Mutagenesis and subsite mapping underpin the importance for substrate specificity of the aglycon subsites of glycoside hydrolase family 11 xylanases. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 977-985.	1.1	37
24	Catalytic Mechanism of Human α-Galactosidase. Journal of Biological Chemistry, 2010, 285, 3625-3632.	1.6	102
25	Transglycosylating and hydrolytic activities of the β-mannosidase from Trichoderma reesei. Biochimie, 2009, 91, 632-638.	1.3	26
26	Novel precipitated fluorescent substrates for the screening of cellulolytic microorganisms. Journal of Microbiological Methods, 2009, 76, 295-300.	0.7	14
27	Enzymatic hydrolysis of 1,3-1,4-β-glucosyl oligosaccharides by 1,3-1,4-β-glucanase from Synechocystis PCC6803: A comparison with assays using polymer and chromophoric oligosaccharide substrates. Archives of Biochemistry and Biophysics, 2008, 478, 187-194.	1.4	8
28	Crystallization and Preliminary Crystallographic Analysis of Laminarinase from Rhodothermus marinus: A Case of Pseudomerohedral Twinning. Protein and Peptide Letters, 2008, 15, 1142-1144.	0.4	1
29	Biochemical and kinetic analysis of the CH3 family β-xylosidase from Aspergillus awamori X-100. Archives of Biochemistry and Biophysics, 2007, 457, 225-234.	1.4	36
30	Biochemical Analysis ofThermotoga maritimaGH36 α-Galactosidase (TmGalA) Confirms the Mechanistic Commonality of Clan GH-D Glycoside Hydrolasesâ€. Biochemistry, 2007, 46, 3319-3330.	1.2	87
31	Human milk antibodies with polysaccharide kinase activity. Immunology Letters, 2006, 103, 58-67.	1.1	24
32	Transferase and hydrolytic activities of the laminarinase from rhodothermus marinus and its M133A, M133C, and M133W mutants. Glycoconjugate Journal, 2006, 23, 501-511.	1.4	8
33	Synthesis of arabinitol 1-phosphate and its use for characterization of arabinitol–phosphate dehydrogenase. Carbohydrate Research, 2005, 340, 539-546.	1.1	2
34	Structural Insights into the β-Xylosidase fromTrichoderma reeseiObtained by Synchrotron Small-Angle X-ray Scattering and Circular Dichroism Spectroscopyâ€. Biochemistry, 2005, 44, 15578-15584.	1.2	12
35	Chemo-enzymatic synthesis of 4-methylumbelliferyl β-(1→4)-d-xylooligosides: new substrates for β-d-xylanase assays. Organic and Biomolecular Chemistry, 2005, 3, 146-151.	1.5	23
36	Human Abzymes with Amylolytic Activity. Trends in Glycoscience and Glycotechnology, 2004, 16, 17-31.	0.0	14

#	Article	IF	CITATIONS
37	Cloning of a gluconate/polyol dehydrogenase gene from Gluconobacter suboxydans IFO 12528, characterisation of the enzyme and its use for the production of 5-ketogluconate in a recombinant Escherichia coli strain. Applied Microbiology and Biotechnology, 2004, 65, 306-14.	1.7	40
38	Crystal Structure of α-Galactosidase from Trichoderma reesei and Its Complex with Galactose: Implications for Catalytic Mechanism. Journal of Molecular Biology, 2004, 339, 413-422.	2.0	69
39	Crystal Structures of β-Galactosidase from Penicillium sp. and its Complex with Galactose. Journal of Molecular Biology, 2004, 343, 1281-1292.	2.0	83
40	Crystal Structure of Exo-inulinase from Aspergillus awamori: The Enzyme Fold and Structural Determinants of Substrate Recognition. Journal of Molecular Biology, 2004, 344, 471-480.	2.0	141
41	Enzymatic synthesis of β-xylanase substrates: transglycosylation reactions of the β-xylosidase from Aspergillus sp Carbohydrate Research, 2003, 338, 313-325.	1.1	57
42	Amylolytic activity of IgM and IgG antibodies from patients with multiple sclerosis. Immunology Letters, 2003, 86, 291-297.	1.1	62
43	Biochemical characterization of Aspergillus awamori exoinulinase: substrate binding characteristics and regioselectivity of hydrolysis. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2003, 1650, 22-29.	1.1	20
44	Multiple enzymic activities of human milk lactoferrin. FEBS Journal, 2003, 270, 3353-3361.	0.2	68
45	Biochemical and genetic characterization of a novel enzyme of pentitol metabolism: d-arabitol-phosphate dehydrogenase. Biochemical Journal, 2003, 371, 191-197.	1.7	16
46	Purification, characterization, gene cloning and preliminary X-ray data of the exo-inulinase from Aspergillus awamori. Biochemical Journal, 2002, 362, 131.	1.7	39
47	Purification, characterization, gene cloning and preliminary X-ray data of the exo-inulinase from Aspergillus awamori. Biochemical Journal, 2002, 362, 131-135.	1.7	65
48	Structural Insights into the β-Mannosidase fromT. reeseiObtained by Synchrotron Small-Angle X-ray Solution Scattering Enhanced by X-ray Crystallographyâ€. Biochemistry, 2002, 41, 9370-9375.	1.2	19
49	Enzymatic properties of α-galactosidase from Trichoderma reesei in the hydrolysis of galactooligosaccharides. Enzyme and Microbial Technology, 2002, 30, 231-239.	1.6	34
50	1-O-Acetyl-β-d-galactopyranose: a novel substrate for the transglycosylation reaction catalyzed by the β-galactosidase from Penicillium sp Carbohydrate Research, 2002, 337, 635-642.	1.1	18
51	Amylolytic activity of IgG and sIgA immunoglobulins from human milk. Clinica Chimica Acta, 2001, 314, 141-152.	0.5	48
52	lsolation, enzymatic properties, and mode of action of an â€ ⁻ exo-1,3-β-glucanase fromT. viride. FEBS Journal, 2001, 268, 6123-6131.	0.2	33
53	An alpha-L-fucosidase from Thermus sp. with unusually broad specificity. Glycoconjugate Journal, 2001, 18, 827-834.	1.4	31
54	Purification, crystallization and preliminary diffraction study of β-galactosidase fromPenicilliumÂsp Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 1508-1509.	2.5	6

Anna A Kulminskaya

#	Article	IF	CITATIONS
55	Crystallization and preliminary X-ray study of Î ² -mannosidase fromTrichoderma reesei. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 342-343.	2.5	1
56	Enzymatic activity and β-galactomannan binding property of β-mannosidase from Trichoderm reesei. Enzyme and Microbial Technology, 1999, 25, 372-377.	1.6	24
57	Acid protease from Trichoderma reesei : limited proteolysis of fungal carbohydrases. Applied Microbiology and Biotechnology, 1999, 52, 226-231.	1.7	36
58	α-Mannosidase fromTrichoderma reeseiParticipates in the Postsecretory Deglycosylation of Glycoproteins. Biochemical and Biophysical Research Communications, 1998, 245, 43-49.	1.0	20
59	The Action of alpha-Mannosidase from Oerskovia sp. on the Mannose-Rich O-Linked Sugar Chains of Glycoproteins. FEBS Journal, 1997, 249, 286-292.	0.2	10