Sashko Damjanovski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4061640/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spatial analysis of RECK, MT1-MMP, and TIMP-2 proteins during early Xenopus laevis development. Gene Expression Patterns, 2019, 34, 119066.	0.3	3
2	Modulation of RECK levels in Xenopus A6 cells: effects on MT1-MMP, MMP-2 and pERK levels. Journal of Biological Research, 2019, 26, 16.	2.2	0
3	Stable expression of α1-antitrypsin Portland in MDA-MB-231 cells increased MT1-MMP and MMP-9 levels, but reduced tumour progression Journal of Cell Communication and Signaling, 2018, 12, 479-488.	1.8	5
4	Inhibition of MT1-MMP proteolytic function and ERK1/2 signalling influences cell migration and invasion through changes in MMP-2 and MMP-9 levels. Journal of Cell Communication and Signaling, 2017, 11, 167-179.	1.8	26
5	The cytoplasmic domain of MT1-MMP is dispensable for migration augmentation but necessary to mediate viability of MCF-7 breast cancer cells. Experimental Cell Research, 2017, 350, 169-183.	1.2	5
6	Less is more: low expression of MT1-MMP is optimal to promote migration and tumourigenesis of breast cancer cells. Molecular Cancer, 2016, 15, 65.	7.9	32
7	Analysis of Xenopus laevis RECK and Its Relationship to Other Vertebrate RECK Sequences. Journal of Scientific Research and Reports, 2015, 6, 504-513.	0.2	3
8	Functional Characterization of Tissue Inhibitor of Metalloproteinase-1 (TIMP-1) N- and C-Terminal Domains during <i>Xenopus laevis</i> Development. Scientific World Journal, The, 2014, 2014, 1-10.	0.8	6
9	Knockdown of Pex11β reveals its pivotal role in regulating peroxisomal genes, numbers, and ROS levels in Xenopus laevis A6 cells. In Vitro Cellular and Developmental Biology - Animal, 2014, 50, 340-349.	0.7	6
10	Domain specific overexpression of TIMP-2 and TIMP-3 reveals MMP-independent functions of TIMPs during <i>Xenopus laevis</i> development. Biochemistry and Cell Biology, 2012, 90, 585-595.	0.9	7
11	Analysis of the MMP-dependent and independent functions of tissue inhibitor of metalloproteinase-2 on the invasiveness of breast cancer cells. Journal of Cell Communication and Signaling, 2012, 6, 87-95.	1.8	18
12	Expression analysis of the peroxiredoxin gene family during early development in Xenopus laevis. Gene Expression Patterns, 2011, 11, 511-516.	0.3	11
13	IGF-1 increases invasive potential of MCF 7 breast cancer cells and induces activation of latent TGF-β1 resulting in epithelial to mesenchymal transition. Cell Communication and Signaling, 2011, 9, 10.	2.7	81
14	PEX11β induces peroxisomal gene expression and alters peroxisome number during early Xenopus laevis development. BMC Developmental Biology, 2011, 11, 24.	2.1	8
15	Peptide Nucleic Acid Pt(II) Conjugates: A Preliminary Study of Antisense Effects in <i>Xenopus laevis</i> . Nucleosides, Nucleotides and Nucleic Acids, 2011, 30, 257-263.	0.4	4
16	Membrane Type-1 Matrix Metalloproteinases and Tissue Inhibitor of Metalloproteinases-2 RNA Levels Mimic Each Other during Xenopus laevis Metamorphosis. PLoS ONE, 2007, 2, e1000.	1,1	10
17	Peroxisome biogenesis occurs in late dorsalâ€anterior structures in the development of <i>Xenopus laevis</i> . Developmental Dynamics, 2007, 236, 3554-3561.	0.8	4
18	Soluble membrane-type 3 matrix metalloprioteinase causes changes in gene expression and increased gelatinase activity during Xenopus laevis development. International Journal of Developmental Biology, 2007, 51, 389-396.	0.3	10

SASHKO DAMJANOVSKI

#	Article	IF	CITATIONS
19	Cloning and developmental characterization of Xenopus laevis membrane type-3 matrix metalloproteinase (MT3-MMP). Biochemistry and Cell Biology, 2006, 84, 167-177.	0.9	10
20	Overexpression of the tissue inhibitor of metalloproteinase-3 during Xenopus embryogenesis affects head and axial tissue formation. Cell Research, 2004, 14, 389-399.	5.7	11
21	Function of Thyroid Hormone Receptors During Amphibian Development. , 2002, 202, 153-176.		14
22	Overexpression of matrix metalloproteinases leads to lethality in transgenicXenopus laevis: Implications for tissue-dependent functions of matrix metalloproteinases during late embryonic development. Developmental Dynamics, 2001, 221, 37-47.	0.8	33
23	Thyroid hormone-induced expression of Sonic hedgehog correlates with adult epithelial development during remodeling of the Xenopus stomach and intestine. Differentiation, 2001, 69, 27-37.	1.0	62
24	Differential regulation of three thyroid hormoneâ€responsive matrix metalloproteinase genes implicates distinct functions during frog embryogenesis. FASEB Journal, 2000, 14, 503-510.	0.2	45
25	Requirement for Matrix Metalloproteinase Stromelysin-3 in Cell Migration and Apoptosis during Tissue Remodeling in Xenopus laevis. Journal of Cell Biology, 2000, 150, 1177-1188.	2.3	110
26	Dual functions of thyroid hormone receptors during Xenopus development. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2000, 126, 199-211.	0.7	118
27	Role of ECM Remodeling in Thyroid Hormoneâ€Dependent Apoptosis during Anuran Metamorphosis. Annals of the New York Academy of Sciences, 2000, 926, 180-191.	1.8	21
28	Spatial and temporal regulation of collagenases-3, -4, and stromelysin -3 implicates distinct functions in apoptosis and tissue remodeling during frog metamorphosis. Cell Research, 1999, 9, 91-105.	5.7	69
29	Transcriptional Repression by XPc1, a New Polycomb Homolog in <i>Xenopus laevis</i> Embryos, Is Independent of Histone Deacetylase. Molecular and Cellular Biology, 1999, 19, 3958-3968.	1.1	27
30	Molecular and cellular basis of tissue remodeling during amphibian metamorphosis. Histology and Histopathology, 1999, 14, 175-83.	0.5	24
31	Regulation of SPARC expression during early Xenopus development: Evolutionary divergence and conservation of DNA regulatory elements between amphibians and mammals. Development Genes and Evolution, 1998, 207, 453-461.	0.4	20
32	Regulation of apoptosis during development: input from the extracellular matrix (review) International Journal of Molecular Medicine, 1998, 2, 273-82.	1.8	32
33	Auto-regulation of thyroid hormone receptor genes during metamorphosis: roles in apoptosis and cell proliferation. International Journal of Developmental Biology, 1998, 42, 107-16.	0.3	15
34	Both Thyroid Hormone and 9- <i>cis</i> Retinoic Acid Receptors Are Required To Efficiently Mediate the Effects of Thyroid Hormone on Embryonic Development and Specific Gene Regulation in <i>Xenopus laevis</i> . Molecular and Cellular Biology, 1997, 17, 4738-4749.	1.1	93
35	Ectopic Expression of SPARC in Xenopus Embryos Interferes with Tissue Morphogenesis: Identification of a Bioactive Sequence in the C-terminal EF Hand. Journal of Histochemistry and Cytochemistry, 1997, 45, 643-655.	1.3	26
36	Anteroposterior Gradient of Epithelial Transformation during Amphibian Intestinal Remodeling: Immunohistochemical Detection of Intestinal Fatty Acid-Binding Protein. Developmental Biology, 1997, 192, 149-161.	0.9	60

#	Article	IF	CITATIONS
37	Transient expression of SPARC in the dorsal axis of early Xenopus embryos: correlation with calcium-dependent adhesion and electrical coupling. International Journal of Developmental Biology, 1994, 38, 439-46.	0.3	23
38	Molecular analysis of Xenopus laevis SPARC (Secreted Protein, Acidic, Rich in Cysteine). A highly conserved acidic calcium-binding extracellular-matrix protein. Biochemical Journal, 1992, 281, 513-517.	1.7	33
39	Expression of SPARC/osteonectin in tissues of bony and cartilaginous vertebrates. Biochemistry and Cell Biology, 1991, 69, 245-250.	0.9	14