Xiaobin Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4061287/publications.pdf

Version: 2024-02-01

126858 102432 4,468 71 33 66 h-index citations g-index papers 77 77 77 7603 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Stretchable Ionic Conductive Elastomer for Highâ€Arealâ€Capacity Lithiumâ€Metal Batteries. Energy and Environmental Materials, 2022, 5, 337-343.	7.3	16
2	Instant Intracellular Delivery of miRNA via Photothermal Effect Induced on Plasmonic Pyramid Arrays. Advanced Functional Materials, 2022, 32, 2107999.	7.8	6
3	A review of recent progress toward the efficient separation of circulating tumor cells via microâ€nanostructured microfluidic chips. View, 2022, 3, .	2.7	13
4	Instant Intracellular Delivery of miRNA via Photothermal Effect Induced on Plasmonic Pyramid Arrays (Adv. Funct. Mater. 9/2022). Advanced Functional Materials, 2022, 32, .	7.8	0
5	Vascularizing the brain inÂvitro. IScience, 2022, 25, 104110.	1.9	13
6	Osteogenesisâ€Inducing Chemical Cues Enhance the Mechanosensitivity of Human Mesenchymal Stem Cells for Osteogenic Differentiation on a Microtopographically Patterned Surface. Advanced Science, 2022, 9, e2200053.	5.6	11
7	Highâ€Performance Zincâ€Air Batteries Based on Bifunctional Hierarchically Porous Nitrogenâ€Doped Carbon. Small, 2022, 18, e2105928.	5.2	23
8	Recent progress on microfluidic devices with incorporated 1D nanostructures for enhanced extracellular vesicle (EV) separation. Bio-Design and Manufacturing, 2022, 5, 607-616.	3.9	5
9	Hybrid Lithographic Arbitrary Patterning of TiO ₂ Nanorod Arrays. ACS Omega, 2022, 7, 22039-22045.	1.6	3
10	Narrower Nanoribbon Biosensors Fabricated by Chemical Lift-off Lithography Show Higher Sensitivity. ACS Nano, 2021, 15, 904-915.	7.3	33
11	Supramolecular Nanosubstrateâ€Mediated Delivery for CRISPR/Cas9 Gene Disruption and Deletion. Small, 2021, 17, 2100546.	5.2	8
12	Single-Step Dual-Layer Photolithography for Tunable and Scalable Nanopatterning. ACS Nano, 2021, 15, 12180-12188.	7.3	37
13	Large-Area Periodic Organic–Inorganic Hybrid Perovskite Nanopyramid Arrays for High-Performance Photodetector and Image Sensor Applications. , 2021, 3, 1189-1196.		23
14	Reproducible and arbitrary patterning of transparent ZnO nanorod arrays for optic and biomedical device integration. Journal of Alloys and Compounds, 2021, , 163003.	2.8	6
15	Photothermal Intracellular Delivery Using Gold Nanodisk Arrays. , 2020, 2, 1475-1483.		15
16	Twoâ€Plateau Li‧e Chemistry for High Volumetric Capacity Se Cathodes. Angewandte Chemie - International Edition, 2020, 59, 13908-13914.	7.2	26
17	A Battery―and Leadless Heartâ€Worn Pacemaker Strategy. Advanced Functional Materials, 2020, 30, 2000477.	7.8	42
18	Twoâ€Plateau Li‧e Chemistry for High Volumetric Capacity Se Cathodes. Angewandte Chemie, 2020, 132, 14012-14018.	1.6	9

#	Article	IF	CITATIONS
19	Scalable Fabrication of Quasi-One-Dimensional Gold Nanoribbons for Plasmonic Sensing. Nano Letters, 2020, 20, 1747-1754.	4.5	19
20	One-dimensional microstructure-assisted intradermal and intracellular delivery. Bio-Design and Manufacturing, 2019, 2, 24-30.	3.9	8
21	Micropatterned Viral Membrane Clusters for Antiviral Drug Evaluation. ACS Applied Materials & https://www.lnterfaces, 2019, 11, 13984-13990.	4.0	7
22	Iron Hydroxide-Modified Nickel Hydroxylphosphate Single-Wall Nanotubes as Efficient Electrocatalysts for Oxygen Evolution Reactions. ACS Applied Materials & Samp; Interfaces, 2018, 10, 9407-9414.	4.0	38
23	Precision-Guided Nanospears for Targeted and High-Throughput Intracellular Gene Delivery. ACS Nano, 2018, 12, 4503-4511.	7.3	103
24	Recent progress on the design and fabrication of micromotors and their biomedical applications. Bio-Design and Manufacturing, 2018, 1, 225-236.	3.9	12
25	Aptamer–field-effect transistors overcome Debye length limitations for small-molecule sensing. Science, 2018, 362, 319-324.	6.0	570
26	Cross-Linked Fluorescent Supramolecular Nanoparticles for Intradermal Controlled Release of Antifungal Drugâ€"A Therapeutic Approach for Onychomycosis. ACS Nano, 2018, 12, 6851-6859.	7.3	19
27	Metal–Organic Framework Based Microcapsules. Angewandte Chemie, 2018, 130, 10305-10309.	1.6	15
28	Metal–Organic Framework Based Microcapsules. Angewandte Chemie - International Edition, 2018, 57, 10148-10152.	7.2	64
29	Large-Area, Ultrathin Metal-Oxide Semiconductor Nanoribbon Arrays Fabricated by Chemical Lift-Off Lithography. Nano Letters, 2018, 18, 5590-5595.	4.5	27
30	Superhydrophilic amorphous Co–B–P nanosheet electrocatalysts with Pt-like activity and durability for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 22062-22069.	5.2	156
31	Polymer-Pen Chemical Lift-Off Lithography. Nano Letters, 2017, 17, 3302-3311.	4.5	39
32	Modifying Commercial Carbon with Trace Amounts of ZIF to Prepare Derivatives with Superior ORR Activities. Advanced Materials, 2017, 29, 1701354.	11.1	94
33	Competitive Coordination Strategy to Finely Tune Pore Environment of Zirconium-Based Metal–Organic Frameworks. ACS Applied Materials & Samp; Interfaces, 2017, 9, 22732-22738.	4.0	36
34	Multiple-Patterning Nanosphere Lithography for Fabricating Periodic Three-Dimensional Hierarchical Nanostructures. ACS Nano, 2017, 11, 10384-10391.	7.3	83
35	Selfâ€Powered Sensors: Ultralight and Binderâ€Free Allâ€Solidâ€State Flexible Supercapacitors for Powering Wearable Strain Sensors (Adv. Funct. Mater. 39/2017). Advanced Functional Materials, 2017, 27, .	7.8	0
36	Ultralight and Binderâ€Free Allâ€Solidâ€State Flexible Supercapacitors for Powering Wearable Strain Sensors. Advanced Functional Materials, 2017, 27, 1702738.	7.8	75

#	Article	IF	Citations
37	Porous Multishelled Ni ₂ P Hollow Microspheres as an Active Electrocatalyst for Hydrogen and Oxygen Evolution. Chemistry of Materials, 2017, 29, 8539-8547.	3.2	279
38	Self-Collapse Lithography. Nano Letters, 2017, 17, 5035-5042.	4.5	19
39	Nickel Diselenide Ultrathin Nanowires Decorated with Amorphous Nickel Oxide Nanoparticles for Enhanced Water Splitting Electrocatalysis. Small, 2017, 13, 1701487.	5.2	99
40	Polyoxometalate Clusterâ€Incorporated Metalâ€Organic Framework Hierarchical Nanotubes. Small, 2016, 12, 2982-2990.	5.2	60
41	Ni-Decorated Molybdenum Carbide Hollow Structure Derived from Carbon-Coated Metal–Organic Framework for Electrocatalytic Hydrogen Evolution Reaction. Chemistry of Materials, 2016, 28, 6313-6320.	3.2	207
42	Rational Synthesis of Three-Dimensional Nanosuperstructures for Applications in Energy Storage and Conversion. IEEE Transactions on Device and Materials Reliability, 2016, 16, 475-482.	1.5	2
43	Surfactant encapsulated palladium-polyoxometalates: controlled assembly and their application as single-atom catalysts. Chemical Science, 2016, 7, 1011-1015.	3.7	84
44	Wellâ€Defined Metal–Organicâ€Framework Hollow Nanostructures for Catalytic Reactions Involving Gases. Advanced Materials, 2015, 27, 5365-5371.	11.1	162
45	Recent Progress on Manâ€Made Inorganic Nanomachines. Small, 2015, 11, 4037-4057.	5.2	80
46	Micromotors with Step-Motor Characteristics by Controlled Magnetic Interactions among Assembled Components. ACS Nano, 2015, 9, 548-554.	7.3	46
47	Tunable Release of Multiplex Biochemicals by Plasmonically Active Rotary Nanomotors. Angewandte Chemie - International Edition, 2015, 54, 2525-2529.	7.2	53
48	Tunable Release of Multiplex Biochemicals by Plasmonically Active Rotary Nanomotors. Angewandte Chemie, 2015, 127, 2555-2559.	1.6	9
49	Tuning the growth of metal-organic framework nanocrystals by using polyoxometalates as coordination modulators. Science China Materials, 2015, 58, 370-377.	3.5	65
50	Fabrication and Robotization of Ultrasensitive Plasmonic Nanosensors for Molecule Detection with Raman Scattering. Sensors, 2015, 15, 10422-10451.	2.1	13
51	Synthesis of Mo-based nanostructures from organic-inorganic hybrid with enhanced electrochemical for water splitting. Science China Materials, 2015, 58, 775-784.	3.5	23
52	Three-dimensional hierarchical Pt-Cu superstructures. Nano Research, 2015, 8, 832-838.	5.8	73
53	Electric-Field Enhanced Molecule Detection in Suspension on Assembled Plasmonic Arrays by Raman Spectroscopy. Journal of Nanotechnology in Engineering and Medicine, 2014, 5, 0410051-410056.	0.8	1
54	Electricâ€Driven Rotation of Silicon Nanowires and Silicon Nanowire Motors. Advanced Functional Materials, 2014, 24, 4843-4850.	7.8	28

#	Article	IF	CITATIONS
55	Ultrahigh-speed rotating nanoelectromechanical system devices assembled from nanoscale building blocks. Nature Communications, 2014, 5, 3632.	5.8	172
56	Three-dimensional multilevel porous thin graphite nanosuperstructures for Ni(OH) ₂ -based energy storage devices. Journal of Materials Chemistry A, 2014, 2, 15768-15773.	5.2	42
57	Rapid synthesis of mesoporous Ni _x Co _{3a^'x} (PO ₄) ₂ hollow shells showing enhanced electrocatalytic and supercapacitor performance. Journal of Materials Chemistry A, 2014, 2, 20182-20188.	5.2	101
58	Nearâ€Field Enhanced Plasmonicâ€Magnetic Bifunctional Nanotubes for Single Cell Bioanalysis. Advanced Functional Materials, 2013, 23, 4332-4338.	7.8	111
59	One-step waferscale synthesis of 3-D ZnO nanosuperstructures by designed catalysts for substantial improvement of solar water oxidation efficiency. Journal of Materials Chemistry A, 2013, 1, 8111.	5.2	18
60	Promoting the catalytic efficiency of a catalyst by a solvothermal method. RSC Advances, 2013, 3, 5819.	1.7	5
61	Guided-mode-resonance-coupled plasmonic-active SiO2 nanotubes for surface enhanced Raman spectroscopy. Applied Physics Letters, 2012, 100, 191114.	1.5	53
62	Electronic properties of nanoentities revealed by electrically driven rotation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9309-9313.	3.3	37
63	Nanosensors: Ordered Arrays of Raman Nanosensors for Ultrasensitive and Location Predictable Biochemical Detection (Adv. Mater. 40/2012). Advanced Materials, 2012, 24, 5516-5516.	11.1	0
64	Ultra-efficient nano-photonic devices using hybrid material systems for optical communication and sensing. , 2012, , .		1
65	One-Step Hydrothermal Synthesis of Comb-Like ZnO Nanostructures. Crystal Growth and Design, 2012, 12, 4829-4833.	1.4	42
66	Ordered Arrays of Raman Nanosensors for Ultrasensitive and Location Predictable Biochemical Detection. Advanced Materials, 2012, 24, 5457-5463.	11.1	55
67	Synthesis and characterization of gold cubic nanoshells using water-soluble GeO ₂ templates. Nanotechnology, 2011, 22, 155706.	1.3	6
68	Large-Scale Synthesis of SnO ₂ Nanosheets with High Lithium Storage Capacity. Journal of the American Chemical Society, 2010, 132, 46-47.	6.6	626
69	Monodispersed NiO nanoflowers with anomalous magnetic behavior. Nanotechnology, 2010, 21, 425702.	1.3	33
70	Growth mechanism of cross-like SnO structure synthesized by thermal decomposition. Chemical Physics Letters, 2009, 482, 287-290.	1.2	29
71	High temperature stable monodisperse superparamagnetic core-shell iron-oxide@SnO2 nanoparticles. Applied Physics Letters, 2009, 95, .	1.5	23