

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4061189/publications.pdf Version: 2024-02-01

71 640

#	Article	IF	CITATIONS
1	Hollow Zeolite Capsules:Â A Novel Approach for Fabrication and Guest Encapsulation. Chemistry of Materials, 2002, 14, 3217-3219.	3.2	149
2	The synthesis of endurable B–Al–ZSM-5 catalysts with tunable acidity for methanol to propylene reaction. Catalysis Communications, 2012, 24, 44-47.	1.6	119
3	Synthesis of mesoporous TiO2 with a crystalline framework. Chemical Communications, 2000, , 1755-1756.	2.2	115
4	Zeolitization of diatomite to prepare hierarchical porous zeolite materials through a vapor-phase transport process. Journal of Materials Chemistry, 2002, 12, 1812-1818.	6.7	109
5	Regular HZSM-5 microboxes prepared via a mild alkaline treatment. Journal of Materials Chemistry, 2008, 18, 3496.	6.7	103
6	Title is missing!. Catalysis Letters, 2002, 83, 19-25.	1.4	94
7	New catalyst of SO 2â^4 /Al2O3–ZrO2 for n-butane isomerization. Topics in Catalysis, 1998, 6, 101-106.	1.3	93
8	Nanoparticulate Pt on mesoporous SBA-15 doped with extremely low amount of W as a highly selective catalyst for glycerol hydrogenolysis to 1,3-propanediol. Green Chemistry, 2017, 19, 2174-2183.	4.6	80
9	Ceriaâ€Zirconia/Zeolite Bifunctional Catalyst for Highly Selective Conversion of Syngas into Aromatics. ChemCatChem, 2018, 10, 4519-4524.	1.8	68
10	Chemical Liquid Deposition Zeolites with Controlled Pore-Opening Size and Shape-Selective Separation of Isomers. Industrial & Engineering Chemistry Research, 1996, 35, 430-433.	1.8	66
11	Oxidative dehydrogenation of ethane with CO2 over Cr supported on submicron ZSM-5 zeolite. Chinese Journal of Catalysis, 2015, 36, 1242-1248.	6.9	64
12	Novel Feâ€based complex oxide catalysts for hydroxylation of phenol. Catalysis Letters, 2000, 69, 231-236.	1.4	53
13	Studies on SO 4 2? promoted mixed oxide superacids. Catalysis Letters, 1996, 37, 187-191.	1.4	49
14	Enhanced Stability of HZSM-5 Supported Ga2O3 Catalyst in Propane Dehydrogenation by Dealumination. Catalysis Letters, 2007, 119, 283-288.	1.4	47
15	Catalytic decomposition of N2O over Fe-ZSM-11 catalysts prepared by different methods: Nature of active Fe species. Journal of Catalysis, 2015, 330, 311-322.	3.1	47
16	Mesoporous microcapsules with noble metal or noble metal oxide shells and their application in electrocatalysis. Journal of Materials Chemistry, 2004, 14, 3548.	6.7	46
17	Preparation of MgO Nanosheets with Polar (111) Surfaces by Ligand Exchange and Esterification - Synthesis, Structure, and Application as Catalyst Support. European Journal of Inorganic Chemistry, 2012, 2012, 2869-2876.	1.0	36
18	Nonclassical from-shell-to-core growth of hierarchically organized SAPO-11 with enhanced catalytic performance in hydroisomerization of n-heptane. RSC Advances, 2016, 6, 32523-32533.	1.7	35

ZI GAO

#	Article	IF	CITATIONS
19	Direct conversion of bio-ethanol to propylene in high yield over the composite of In ₂ O ₃ and zeolite beta. Green Chemistry, 2017, 19, 5582-5590.	4.6	35
20	Catalytic decomposition of N2O over Cu-ZSM-11 catalysts. Microporous and Mesoporous Materials, 2014, 191, 112-117.	2.2	33
21	Preparation of Secondary Mesopores in Mesoporous Anatase–Silica Nanocomposites with Unprecedentedâ€High Photocatalytic Degradation Performances. Advanced Functional Materials, 2016, 26, 964-976.	7.8	31
22	Effect of modifiers on the activity of a Cr2O3/Al2O3 catalyst in the dehydrogenation of ethylbenzene with CO2. Green Chemistry, 2005, 7, 524.	4.6	29
23	Effect of Lanthanum Promotion on the Unsupported Mo–Co–K Sulfide Catalysts for Synthesis of Mixed Alcohols from Syngas. Catalysis Letters, 2009, 127, 448-455.	1.4	26
24	Oxidative Dehydrogenation of Ethane with CO2 over Au/CeO2 Nanorod Catalysts. Catalysis Letters, 2018, 148, 1634-1642.	1.4	23
25	Single-Site CrO x Moieties on Silicalite: Highly Active and Stable for Ethane Dehydrogenation with CO2. Catalysis Letters, 2018, 148, 1375-1382.	1.4	21
26	Catalytic decomposition of N ₂ O over Rh/Zn–Al ₂ O ₃ catalysts. RSC Advances, 2017, 7, 4243-4252.	1.7	19
27	Correlation among preparation methods/conditions, physicochemical properties, and catalytic performance of Rh/hydroxyapatite catalysts in N 2 O decomposition. Journal of Molecular Catalysis A, 2016, 420, 73-81.	4.8	18
28	Direct conversion of syngas into light aromatics over Cu-promoted ZSM-5 with ceria–zirconia solid solution. Catalysis Science and Technology, 2020, 10, 6562-6572.	2.1	18
29	Low-temperature catalytic combustion on Pt/SO 4 2? /ZrO2 and Pd/SO 4 2? /ZrO2 catalysts. Catalysis Letters, 1996, 42, 209-212.	1.4	17
30	Fabrication of zeolite coatings on stainless steel grids. Journal of Materials Science Letters, 2001, 20, 2091-2094.	0.5	17
31	Dehydrogenation of Isobutane with Carbon Dioxide over SBA-15-Supported Vanadium Oxide Catalysts. Catalysts, 2016, 6, 171.	1.6	17
32	Selective oxidation on chromia-pillared zirconium phosphate and phenylphosphonate. Catalysis Letters, 1999, 57, 37-42.	1.4	16
33	Enhanced ionic conductivity of poly(ethylene oxide) (PEO) electrolyte by adding mesoporous molecular sieve LiAlSBA. Journal of Solid State Electrochemistry, 2005, 9, 609-615.	1.2	16
34	Ga-Doped MgAl ₂ O ₄ Spinel as an Efficient Catalyst for Ethane Dehydrogenation to Ethylene Assisted by CO ₂ . Industrial & Engineering Chemistry Research, 2021, 60, 11707-11714.	1.8	16
35	Title is missing!. Catalysis Letters, 2003, 89, 41-47.	1.4	15
36	Alkylation of hydroquinone with tert-butanol over AlSBA-15 mesoporous molecular sieves. Catalysis Letters, 2005, 100, 95-100.	1.4	15

ZI GAO

#	Article	IF	CITATIONS
37	Dehydrogenation of Propane to Propylene in the Presence of CO ₂ over Steamingâ€ŧreated HZSMâ€5 Supported ZnO. Chinese Journal of Chemistry, 2012, 30, 929-934.	2.6	15
38	The Active Sites of a Rod‣haped Hollandite DeNO _{<i>x</i>} Catalyst. Chemistry - A European Journal, 2015, 21, 9619-9623.	1.7	15
39	Studies on the Colloidization and Stability of Layered M(IV) Phosphates in Aqueous Amine Solutions. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1997, 27, 303-317.	1.6	14
40	Catalytic activities and properties of mesoporous sulfated Al2O3–ZrO2. Catalysis Letters, 2007, 116, 27-34.	1.4	14
41	Dehydrogenation of Propane to Propylene over Ga ₂ O ₃ Supported on Mesoporous HZSMâ€5 in the Presence of CO ₂ . Chinese Journal of Chemistry, 2010, 28, 1559-1564.	2.6	14
42	Dehydrogenation of Isobutane to Isobutene with Carbon Dioxide over SBAâ€15â€Supported Chromiaâ€Ceria Catalysts. Chinese Journal of Chemistry, 2017, 35, 1619-1626.	2.6	14
43	Mn-doped CeO2 Nanorod Supported Au Catalysts for Dehydrogenation of Ethane with CO2. Catalysts, 2019, 9, 119.	1.6	14
44	Studies on the Formation and Characteristics of Two Types of p-Xylene/Silicalite-1 Associates. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1997, 28, 1-15.	1.6	13
45	Chromium Oxide Supported on Silicalite-1 Zeolite as a Novel Efficient Catalyst for Dehydrogenation of Isobutane Assisted by CO2. Catalysts, 2019, 9, 1040.	1.6	13
46	Efficient Aerobic Oxidation of Ethyl Lactate to Ethyl Pyruvate over V ₂ O ₅ /g-C ₃ N ₄ Catalysts. ACS Omega, 2020, 5, 16200-16207.	1.6	13
47	In situ 13C MAS NMR Study on the Mechanism of Butane Isomerization Over Catalysts with Different Acid Strength. Topics in Catalysis, 2005, 35, 141-153.	1.3	12
48	Dehydrogenation of propane to propene over phosphorus-modified HZSM-5 supported Ga2O3. Reaction Kinetics and Catalysis Letters, 2008, 95, 113-122.	0.6	12
49	Characterization and Catalytic Activities of Al2O3-Promoted Sulfated Tin Oxides. Catalysis Letters, 2009, 133, 119-124.	1.4	12
50	Catalytic hydrolysis of chlorofluorocarbon (CFC-12) over WO3/ZrO2. Catalysis Letters, 2000, 65, 85-89.	1.4	11
51	Effect of Titania Polymorphs on the Structure and Catalytic Performance of the Pt–WO _{<i>x</i>} /TiO ₂ Catalyst in Glycerol Hydrogenolysis to 1,3-Propanediol. ACS Sustainable Chemistry and Engineering, 2022, 10, 9532-9545.	3.2	11
52	g-C3N4 modified Co3O4 as efficient catalysts for aerobic oxidation of benzyl alcohol. Reaction Kinetics, Mechanisms and Catalysis, 2019, 128, 109-120.	0.8	10
53	Morphology Effects of Nanoscale Er2O3 and Sr-Er2O3 Catalysts for Oxidative Coupling of Methane. Catalysis Letters, 2021, 151, 2197.	1.4	10
54	Au/TiO2 for Ethane Dehydrogenation: Effect of Silica Doping. Catalysis Letters, 2020, 150, 2013-2020.	1.4	10

Zi Gao

#	Article	IF	CITATIONS
55	Ethylbenzene dehydrogenation to styrene in the presence of carbon dioxide over chromia-based catalysts. New Journal of Chemistry, 2004, 28, 373.	1.4	9
56	lsomerization of α-Pinene Over Porous Phosphate Heterostructure Materials: Effects of Porosity and Acidity. Catalysis Letters, 2009, 131, 560-565.	1.4	9
57	Liquid-phase α -Pinene Isomerization over Fe-doped Sulfated Zirconia Prepared by a Hydrothermal Treatment-assisted Process. Chinese Journal of Chemistry, 2011, 29, 1095-1100.	2.6	9
58	A Highly Efficient Bifunctional Catalyst CoOx/tri-g-C3N4 for One-Pot Aerobic Oxidation–Knoevenagel Condensation Reaction. Catalysts, 2020, 10, 712.	1.6	8
59	Dehydrogenation of ethane assisted by CO2 over Y-doped ceria supported Au catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2021, 132, 417-429.	0.8	8
60	Catalyt properties of tungsten oxycarbide and carbide in hydrocarbon conversion. Chinese Journal of Chemistry, 1990, 8, 207-214.	2.6	7
61	Oxidative Dehydrogenation of 1-Butene to 1,3-Butadiene Using CO2 over Cr-SiO2 Catalysts Prepared by Sol-gel Method. Chemical Research in Chinese Universities, 2018, 34, 609-615.	1.3	7
62	Enhancing BTX selectivity of the syngas to aromatics reaction through silylation of CTAB pretreated ZSM-5. Catalysis Science and Technology, 2021, 11, 4944-4952.	2.1	5
63	Nanosheet-Like Ho2O3 and Sr-Ho2O3 Catalysts for Oxidative Coupling of Methane. Catalysts, 2021, 11, 388.	1.6	5
64	Synthesis of adamantane on zeolite catalysts. Chinese Journal of Chemistry, 1994, 12, 52-57.	2.6	4
65	Hydrogenation of Methyl Benzoate over Mn/Al Catalysts: Comparison among Catalyst Preparation Routes. Topics in Catalysis, 2005, 35, 177-185.	1.3	3
66	Electronic structure and catalytic behavior of tungsten carbides. Chinese Journal of Chemistry, 1991, 9, 97-101.	2.6	3
67	Dehydrogenation activities of highly dispersed transition metal oxides on NaY zeolite. Chinese Journal of Chemistry, 2010, 10, 320-324.	2.6	3
68	Preparation and catalytic performance of perfluorosulfonic acid-functionalized carbon nanotubes. Chinese Journal of Catalysis, 2014, 35, 1874-1882.	6.9	3
69	Isobutane Dehydrogenation Assisted by CO 2 over Silicaliteâ€1â€Supported ZnO Catalysts: Influence of Support Crystallite Size. Chinese Journal of Chemistry, 2020, 38, 703-708.	2.6	3
70	Enhanced Catalytic Performance of Cr/MOR for Ethane Dehydrogenation Through Dealumination. Catalysis Letters, 2021, 151, 1499-1507.	1.4	3
71	Oxidative coupling of methane over Y2O3 and Sr–Y2O3 nanorods. Reaction Kinetics, Mechanisms and Catalysis, 2021, 134, 711-725.	0.8	3
72	Highâ€Efficiency and Longâ€life Synergetic Dualâ€Oxide/Zeolite Catalyst for Direct Conversion of Syngas into Aromatics. ChemCatChem, 0, , .	1.8	3

Zi Gao

#	Article	IF	CITATIONS
73	Solid-state crystallization process and mechanism of B-Al-ZSM-5 zeolite. Science in China Series B: Chemistry, 1998, 41, 103-112.	0.8	2
74	Hydrogenation of CO over carbides of tungsten. Chinese Journal of Chemistry, 1992, 10, 5-9.	2.6	2
75	Characterization and Dehydrogenation Activity of SBAâ€15 and HMS Supported Chromia Catalysts ^{â€} . Chinese Journal of Chemistry, 2002, 20, 1192-1198.	2.6	2
76	Ethane dehydrogenation over Co-based MOR zeolites. Reaction Kinetics, Mechanisms and Catalysis, 2022, 135, 2045-2058.	0.8	2
77	Direct and Highly Selective Conversion of Bioethanol to Propylene Over Y-CeO2 and Zeolite Beta Composite. Catalysis Letters, 0, , 1.	1.4	1
78	ADSORPTION AND CATALYSIS., 1995, , 113-198.		0