Ravindra Jha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4061012/publications.pdf Version: 2024-02-01

Ρηλινίο Την

#	Article	IF	CITATIONS
1	Subâ€ppm sulfur dioxide detection using MoS ₂ modified multiâ€wall carbon nanotubes at room temperature. Nano Select, 2022, 3, 98-107.	1.9	9
2	Non-Dispersive Infrared Gas Sensing Technology: A Review. IEEE Sensors Journal, 2022, 22, 6-15.	2.4	53
3	Noble metal nanoparticle decorated tungsten diselenide nanosheets for ultrasensitive detection of NO2 at room temperature. Journal of Alloys and Compounds, 2022, 899, 163166.	2.8	14
4	Development of a Ferrite Film Based Solid State Sensor System for Ultra Low Concentration Hydrogen Sulfide Gas Detection. IEEE Sensors Journal, 2022, 22, 8402-8409.	2.4	11
5	Scalable Approach to Develop High Performance Chemiresistive Nitric Oxide Sensor. IEEE Nanotechnology Magazine, 2022, 21, 177-184.	1.1	9
6	Gas sensing behavior of metal-catecholates based MOFs. Nanotechnology, 2022, 33, 295501.	1.3	2
7	Co ₃ O ₄ /MoS ₂ Nanostructures for NO _{<i>x</i>} Sensing. ACS Applied Nano Materials, 2022, 5, 7754-7766.	2.4	7
8	ZnO Nanorods Grown on WS ₂ Nanosheets for Chemiresistive H ₂ S Sensing. ACS Applied Nano Materials, 2022, 5, 9241-9251.	2.4	9
9	Assessing simultaneous effect of Ar/O2 ratio and process pressure on ammonia sensing properties of reactive DC magnetron sputtered SnO2 thin films. Materials Letters, 2021, 286, 129239.	1.3	3
10	Growth-Temperature Dependent Unpassivated Oxygen Bonds Determine the Gas Sensing Abilities of Chemical Vapor Deposition-Grown CuO Thin Films. ACS Applied Materials & Interfaces, 2021, 13, 21936-21943.	4.0	24
11	Ammonia Sensing Performance of RGO-Based Chemiresistive Gas Sensor Decorated With Exfoliated MoSe ₂ Nanosheets. IEEE Sensors Journal, 2021, 21, 10211-10218.	2.4	10
12	Ultra-Sonication Assisted Synthesis of 2D SnS ₂ Nanoflakes for Room-Temperature No Gas Detection. IEEE Sensors Journal, 2021, 21, 10420-10427.	2.4	9
13	Facile green synthesis of 2D hexagonal MoO3 for selective detection of ammonia at room temperature. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 271, 115249.	1.7	16
14	Ultrasensitive chemiresistive humidity sensor based on gold functionalized WS2 nanosheets. Sensors and Actuators A: Physical, 2021, 331, 113008.	2.0	10
15	Large-area growth of MoS ₂ at temperatures compatible with integrating back-end-of-line functionality. 2D Materials, 2021, 8, 025008.	2.0	14
16	Fe ₃ O ₄ Nanoparticle-Decorated WSe ₂ Nanosheets for Selective Chemiresistive Detection of Gaseous Ammonia at Room Temperature. ACS Applied Nano Materials, 2020, 3, 11160-11171.	2.4	19
17	Synthesis of CuO Nanoflowers and Their Application Towards Inflammable Gas Sensing. Journal of Electronic Materials, 2020, 49, 5070-5076.	1.0	13
18	Boron nanostructures obtained <i>via</i> ultrasonic irradiation for high performance chemiresistive methane sensors. Nanoscale Advances, 2020, 2, 1837-1842.	2.2	8

Ravindra Jha

#	Article	IF	CITATIONS
19	Ultrasonication assisted fabrication of a tungsten sulfide/tungstite heterostructure for ppb-level ammonia detection at room temperature. RSC Advances, 2020, 10, 21993-22001.	1.7	6
20	1T-Phase Titanium Disulfide Nanosheets for Sensing H ₂ S and O ₂ . ACS Applied Nano Materials, 2020, 3, 3382-3394.	2.4	31
21	Chemiresistive Gas Sensors: Recent Progress in Chemiresistive Gas Sensing Technology Based on Molybdenum and Tungsten Chalcogenide Nanostructures (Adv. Mater. Interfaces 7/2020). Advanced Materials Interfaces, 2020, 7, 2070038.	1.9	1
22	Recent Progress in Chemiresistive Gas Sensing Technology Based on Molybdenum and Tungsten Chalcogenide Nanostructures. Advanced Materials Interfaces, 2020, 7, 1901992.	1.9	38
23	Giant Humidity Responsiveness of Platinum Functionalized WS ₂ Nanosheet Based Chemiresistors. , 2020, , .		2
24	Tungsten Disulphide Nanosheets for High-Performance Chemiresistive Ammonia Gas Sensor. IEEE Sensors Journal, 2019, 19, 11767-11774.	2.4	16
25	CVD Grown Cuprous Oxide Thin Film Based High Performance Chemiresistive Ammonia Gas Sensors. IEEE Sensors Journal, 2019, 19, 11759-11766.	2.4	16
26	Hydrogen Sulfide Gas Sensing Capabilities of Solution Processed Vanadium Pentoxide Nanosheets. IEEE Nanotechnology Magazine, 2019, 18, 932-939.	1.1	8
27	MoSe2 nanoflakes based chemiresistive sensors for ppb-level hydrogen sulfide gas detection. Sensors and Actuators B: Chemical, 2019, 297, 126687.	4.0	103
28	2D Nano Materials for CMOS compatible Gas Sensors. , 2019, , .		1
29	Humidity Sensing Properties of Coexfoliated Heterogeneous WS ₂ /WSe ₂ Nanohybrids. IEEE Nanotechnology Magazine, 2018, 17, 582-589.	1.1	15
30	Enhanced Gas Sensing Properties of Liquid-Processed Semiconducting Tungsten Chalcogenide (WX _i , X = O and S) Based Hybrid Nanomaterials. IEEE Sensors Journal, 2018, 18, 3494-3501.	2.4	25
31	Ammonia vapour sensing properties of <i>in situ</i> polymerized conducting PANI-nanofiber/WS ₂ nanosheet composites. New Journal of Chemistry, 2018, 42, 735-745.	1.4	64
32	Ppb-Level Ammonia Detection by Exfoliated WS <inf>2</inf> Based Chemiresistive Sensors for Breath Analysis. , 2018, , .		3
33	An effective liquid-phase exfoliation approach to fabricate tungsten disulfide into ultrathin two-dimensional semiconducting nanosheets. Journal of Materials Science, 2017, 52, 7256-7268.	1.7	53
34	WS ₂ /GO Nanohybrids for Enhanced Relative Humidity Sensing at Room Temperature. IEEE Sensors Journal, 2017, 17, 7340-7347.	2.4	30
35	Green synthesis route for WS ₂ nanosheets using water intercalation. Materials Research Express, 2016, 3, 095014.	0.8	8
36	Liquid exfoliated pristine WS ₂ nanosheets for ultrasensitive and highly stable chemiresistive humidity sensors. Nanotechnology, 2016, 27, 475503.	1.3	100