
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4060839/publications.pdf Version: 2024-02-01

ΙΛΝ ΠΑΩΟΟΙΕ

#	Article	IF	CITATIONS
1	Generation of an Optimized Polyvalent Monocyte-Derived Dendritic Cell Vaccine by Transfecting Defined RNAs after Rather Than before Maturation. Journal of Immunology, 2005, 174, 3087-3097.	0.8	133
2	Targeting of DEC-205 on human dendritic cells results in efficient MHC class II–restricted antigen presentation. Blood, 2010, 116, 2277-2285.	1.4	111
3	Transfer of mRNA encoding recombinant immunoreceptors reprograms CD4+ and CD8+ T cells for use in the adoptive immunotherapy of cancer. Gene Therapy, 2009, 16, 596-604.	4.5	105
4	Redirecting T Cells to Ewing's Sarcoma Family of Tumors by a Chimeric NKG2D Receptor Expressed by Lentiviral Transduction or mRNA Transfection. PLoS ONE, 2012, 7, e31210.	2.5	101
5	A new way to generate cytolytic tumor-specific T cells: electroporation of RNA coding for a T cell receptor into T lymphocytes. Cancer Immunology, Immunotherapy, 2006, 55, 1132-1141.	4.2	95
6	RNA-transfection of γ/δT cells with a chimeric antigen receptor or an α/β T-cell receptor: a safer alternative to genetically engineered α/β T cells for the immunotherapy of melanoma. BMC Cancer, 2017, 17, 551.	2.6	87
7	Carnosol-induced apoptosis and downregulation of Bcl-2 in B-lineage leukemia cells. Cancer Letters, 2001, 170, 33-39.	7.2	74
8	Mild hyperthermia enhances human monocyte-derived dendritic cell functions and offers potential for applications in vaccination strategies. International Journal of Hyperthermia, 2011, 27, 591-603.	2.5	67
9	Norm- and hypo-fractionated radiotherapy is capable of activating human dendritic cells. Journal of Immunotoxicology, 2014, 11, 328-336.	1.7	65
10	The Generation of CAR-Transfected Natural Killer T Cells for the Immunotherapy of Melanoma. International Journal of Molecular Sciences, 2018, 19, 2365.	4.1	53
11	Effective Clinical-scale Production of Dendritic Cell Vaccines by Monocyte Elutriation Directly in Medium, Subsequent Culture in Bags and Final Antigen Loading Using Peptides or RNA Transfection. Journal of Immunotherapy, 2007, 30, 663-674.	2.4	51
12	The si <scp>RNA</scp> â€mediated downregulation of <scp>PD</scp> â€1 alone or simultaneously with <scp>CTLA</scp> â€4 shows enhanced in vitro <scp>CAR</scp> â€Tâ€cell functionality for further clinical development towards the potential use in immunotherapy of melanoma. Experimental Dermatology, 2018, 27, 769-778.	2.9	51
13	Clinical-Scale Production of CAR-T Cells for the Treatment of Melanoma Patients by mRNA Transfection of a CSPG4-Specific CAR under Full GMP Compliance. Cancers, 2019, 11, 1198.	3.7	46
14	Therapeutic Cancer Vaccination with Ex Vivo RNA-Transfected Dendritic Cells—An Update. Pharmaceutics, 2020, 12, 92.	4.5	46
15	Leukoreduction system chambers are an efficient, valid, and economic source of functional monocyte-derived dendritic cells and lymphocytes. Immunobiology, 2013, 218, 1392-1401.	1.9	45
16	Nonviral RNA Transfection to Transiently Modify T Cells with Chimeric Antigen Receptors for Adoptive Therapy. Methods in Molecular Biology, 2013, 969, 187-201.	0.9	44
17	A GMP-compliant protocol to expand and transfect cancer patient T cells with mRNA encoding a tumor-specific chimeric antigen receptor. Cancer Immunology, Immunotherapy, 2014, 63, 999-1008.	4.2	40
18	Stability and activity of MCSP-specific chimeric antigen receptors (CARs) depend on the scFv antigen-binding domain and the protein backbone. Cancer Immunology, Immunotherapy, 2015, 64, 1623-1635.	4.2	39

#	Article	IF	CITATIONS
19	CSPG4 as Target for CAR-T-Cell Therapy of Various Tumor Entities–Merits and Challenges. International Journal of Molecular Sciences, 2019, 20, 5942.	4.1	38
20	Vaccination with Antigen-Transfected, NKT Cell Ligand–Loaded, Human Cells Elicits Robust <i>In Situ</i> Immune Responses by Dendritic Cells. Cancer Research, 2013, 73, 62-73.	0.9	37
21	Autophagic degradation of lamins facilitates the nuclear egress of herpes simplex virus type 1. Journal of Cell Biology, 2019, 218, 508-523.	5.2	36
22	Introduction of functional chimeric E/L-selectin by RNA electroporation to target dendritic cells from blood to lymph nodes. Cancer Immunology, Immunotherapy, 2008, 57, 467-477.	4.2	33
23	Concurrent interaction of DCs with CD4 ⁺ and CD8 ⁺ T cells improves secondary CTL expansion: It takes three to tango. European Journal of Immunology, 2014, 44, 3543-3559.	2.9	32
24	Chimeric Antigen Receptors in Different Cell Types: New Vehicles Join the Race. Human Gene Therapy, 2018, 29, 547-558.	2.7	29
25	Combining a chimeric antigen receptor and a conventional Tâ€cell receptor to generate T cells expressing two additional receptors (<scp>TETAR</scp> s) for a multiâ€hit immunotherapy of melanoma. Experimental Dermatology, 2016, 25, 872-879.	2.9	27
26	Electroporation of mRNA as Universal Technology Platform to Transfect a Variety of Primary Cells with Antigens and Functional Proteins. Methods in Molecular Biology, 2017, 1499, 165-178.	0.9	27
27	A fast and robust method to clone and functionally validate T-cell receptors. Journal of Immunological Methods, 2009, 346, 45-54.	1.4	25
28	Triggering of NFâ€₽B in cytokineâ€matured human DCs generates superior DCs for Tâ€cell priming in cancer immunotherapy. European Journal of Immunology, 2014, 44, 3413-3428.	2.9	25
29	Human Adenovirus-Specific γ/δ and CD8+ T Cells Generated by T-Cell Receptor Transfection to Treat Adenovirus Infection after Allogeneic Stem Cell Transplantation. PLoS ONE, 2014, 9, e109944.	2.5	23
30	Autocrine TNF Is Critical for the Survival of Human Dendritic Cells by Regulating BAK, BCL-2, and FLIPL. Journal of Immunology, 2012, 188, 4810-4818.	0.8	21
31	Generation of CD8 ⁺ T cells expressing two additional T-cell receptors (TETARs) for personalised melanoma therapy. Cancer Biology and Therapy, 2015, 16, 1323-1331.	3.4	20
32	CSPG4-Specific CAR T Cells for High-Risk Childhood B Cell Precursor Leukemia. International Journal of Molecular Sciences, 2019, 20, 2764.	4.1	20
33	NF-κB activation triggers NK-cell stimulation by monocyte-derived dendritic cells. Therapeutic Advances in Medical Oncology, 2019, 11, 175883591989162.	3.2	20
34	Blockade of CCR7 leads to decreased dendritic cell migration to draining lymph nodes and promotes graft survival in low-risk corneal transplantation. Experimental Eye Research, 2016, 146, 1-6.	2.6	19
35	CARs: Beyond T Cells and T Cell-Derived Signaling Domains. International Journal of Molecular Sciences, 2020, 21, 3525.	4.1	19
36	A single chain immunotoxin, targeting the melanoma-associated chondroitin sulfate proteoglycan, is a potent inducer of apoptosis in cultured human melanoma cells. Melanoma Research, 2008, 18, 73-84.	1.2	18

#	Article	IF	CITATIONS
37	Preclinical evaluation of NF-κB-triggered dendritic cells expressing the viral oncogenic driver of Merkel cell carcinoma for therapeutic vaccination. Therapeutic Advances in Medical Oncology, 2017, 9, 451-464.	3.2	18
38	An improved method for RNA isolation and removal of melanin contamination from melanoma tissue: Implications for tumor antigen detection and amplification. Journal of Immunological Methods, 2006, 313, 119-128.	1.4	17
39	Selection of adenovirus-specific and Epstein-Barr virus–specific T cells with major histocompatibility class I streptamers under Good Manufacturing Practice (GMP)–compliant conditions. Cytotherapy, 2015, 17, 989-1007.	0.7	17
40	Transfer of mRNA Encoding Invariant NKT Cell Receptors Imparts Glycolipid Specific Responses to T Cells and γÎT Cells. PLoS ONE, 2015, 10, e0131477.	2.5	16
41	BRAF and MEK Inhibitors Influence the Function of Reprogrammed T Cells: Consequences for Adoptive T-Cell Therapy. International Journal of Molecular Sciences, 2018, 19, 289.	4.1	16
42	Strong and sustained effector function of memory†versus naà veâ€derived <scp>T</scp> cells upon <scp>T</scp> â€cell receptor <scp>RNA</scp> transfer: Implications for cellular therapy. European Journal of Immunology, 2012, 42, 3442-3453.	2.9	15
43	Human T cells expressing two additional receptors (TETARs) specific for HIV-1 recognize both epitopes. Blood, 2011, 118, 5174-5177.	1.4	14
44	INTERFERON-Î ³ INCREASES THE EXPRESSION OF GLYCOSYLATED CD95 IN B-LEUKEMIC CELLS: AN INDUCIBLE MODEL TO STUDY THE ROLE OF GLYCOSYLATION IN CD95-SIGNALLING AND TRAFFICKING. Cytokine, 2002, 18, 98-107.	3.2	12
45	CD8+ T-cell priming and boosting: more antigen-presenting DC, or more antigen per DC?. Cancer Immunology, Immunotherapy, 2013, 62, 1769-1780.	4.2	12
46	Generation of HIV-1-specific T cells by electroporation of T-cell receptor RNA. Aids, 2008, 22, 1577-1582.	2.2	10
47	Just One Position-Independent Lysine Residue Can Direct MelanA into Proteasomal Degradation following N-Terminal Fusion of Ubiquitin. PLoS ONE, 2013, 8, e55567.	2.5	10
48	Electroporated Antigen-Encoding mRNA Is Not a Danger Signal to Human Mature Monocyte-Derived Dendritic Cells. Journal of Immunology Research, 2015, 2015, 1-9.	2.2	9
49	A One-Armed Phase I Dose Escalation Trial Design: Personalized Vaccination with IKKβ-Matured, RNA-Loaded Dendritic Cells for Metastatic Uveal Melanoma. Frontiers in Immunology, 2022, 13, 785231.	4.8	9
50	Generation of an Oncolytic Herpes Simplex Virus 1 Expressing Human MelanA. Frontiers in Immunology, 2019, 10, 2.	4.8	8
51	Network- and systems-based re-engineering of dendritic cells with non-coding RNAs for cancer immunotherapy. Theranostics, 2021, 11, 1412-1428.	10.0	8
52	BRAF and MEK Inhibitors Affect Dendritic-Cell Maturation and T-Cell Stimulation. International Journal of Molecular Sciences, 2021, 22, 11951.	4.1	8
53	Breaking Entry-and Species Barriers: LentiBOOST® Plus Polybrene Enhances Transduction Efficacy of Dendritic Cells and Monocytes by Adenovirus 5. Viruses, 2022, 14, 92.	3.3	6
54	HIV-1 mRNA electroporation of PBMC: A simple and efficient method to monitor T-cell responses against autologous HIV-1 in HIV-1-infected patients. Journal of Immunological Methods, 2012, 380, 40-55.	1.4	5

#	Article	IF	CITATIONS
55	T-cell receptor transfer for boosting HIV-1-specific T-cell immunity in HIV-1-infected patients. Aids, 2016, 30, 2149-2158.	2.2	5
56	A Chimeric IL-15/IL-15Rα Molecule Expressed on NFκB-Activated Dendritic Cells Supports Their Capability to Activate Natural Killer Cells. International Journal of Molecular Sciences, 2021, 22, 10227.	4.1	5
57	Sarcoidosis Under Dendritic Cell Vaccination Immunotherapy in Long-term Responding Patients with Metastatic Melanoma. Anticancer Research, 2017, 37, 3243-3248.	1.1	5
58	A new method to monitor antigen-specific CD8+ T cells, avoiding additional target cells and the restriction to human leukocyte antigen haplotype. Gene Therapy, 2015, 22, 516-520.	4.5	4
59	Proteomic Response of Human Umbilical Vein Endothelial Cells to Histamine Stimulation. Proteomics, 2017, 17, 1700116.	2.2	4
60	Immune checkpoint blockade can synergize with radiation therapy, even in tumors resistant to checkpoint monotherapy. EMBO Molecular Medicine, 2017, 9, 135-136.	6.9	3
61	Curatopes Melanoma: A Database of Predicted T-cell Epitopes from Overly Expressed Proteins in Metastatic Cutaneous Melanoma. Cancer Research, 2019, 79, 5452-5456.	0.9	3
62	T-Cell Responses in Merkel Cell Carcinoma: Implications for Improved Immune Checkpoint Blockade and Other Therapeutic Options. International Journal of Molecular Sciences, 2021, 22, 8679.	4.1	3
63	Multi-Level Computational Modeling of Anti-Cancer Dendritic Cell Vaccination Utilized to Select Molecular Targets for Therapy Optimization. Frontiers in Cell and Developmental Biology, 2021, 9, 746359.	3.7	3
64	Transcriptional Targeting of Mature Dendritic Cells with Adenoviral Vectors via a Modular Promoter System for Antigen Expression and Functional Manipulation. Journal of Immunology Research, 2016, 2016, 1-17.	2.2	2