Changyou Gao

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/40606/changyou-gao-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

18,559 458 112 73 h-index g-index citations papers 6.99 468 20,604 6.9 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
458	3D printing of a tough double-network hydrogel and its use as a scaffold to construct a tissue-like hydrogel composite <i>Journal of Materials Chemistry B</i> , 2022 ,	7.3	3
457	Multifunctional elastomer cardiac patches for preventing left ventricle remodeling after myocardial infarction in vivo <i>Biomaterials</i> , 2022 , 282, 121382	15.6	4
456	A ROS-scavenging hydrogel loaded with bacterial quorum sensing inhibitor hyperbranched poly-L-lysine promotes the wound scar-free healing of infected skin in vivo. <i>Chemical Engineering Journal</i> , 2022 , 135130	14.7	3
455	Dexamethasone-loaded ROS-responsive poly(thioketal) nanoparticles suppress inflammation and oxidative stress of acute lung injury <i>Bioactive Materials</i> , 2022 , 14, 430-442	16.7	1
454	Supramolecular microgels/microgel scaffolds for tissue repair and regeneration 2022, 1, 100006		1
453	Micropatterns and peptide gradient on the inner surface of a guidance conduit synergistically promotes nerve regeneration. <i>Bioactive Materials</i> , 2022 , 9, 134-146	16.7	6
452	Influence of enantiomeric polylysine grafted on gold nanorods on the uptake and inflammatory response of bone marrow-derived macrophages in vitro. <i>Journal of Biomedical Materials Research - Part A</i> , 2022 , 110, 143-155	5.4	1
451	Biomedical polymers: synthesis, properties, and applications Science China Chemistry, 2022, 1-66	7.9	11
450	Preservation of cardiac functions post myocardial infarction in vivo by a phenylboric acid-grafted hyaluronic hydrogel with anti-oxidation and accelerated degradation under oxidative microenvironment. <i>Composites Part B: Engineering</i> , 2022 , 238, 109941	10	1
449	Implantable Thermal Therapeutic Device with Precise Temperature Control Enabled by Foldable Electronics and Heat-Insulating Pads. <i>Research</i> , 2022 , 2022, 1-11	7.8	
448	Promoting the healing of infected diabetic wound by an anti-bacterial and nano-enzyme-containing hydrogel with inflammation-suppressing, ROS-scavenging, oxygen and nitric oxide-generating properties. <i>Biomaterials</i> , 2022 , 121597	15.6	4
447	A hyaluronic acid/platelet-rich plasma hydrogel containing MnO2 nanozymes efficiently alleviates osteoarthritis in vivo. <i>Carbohydrate Polymers</i> , 2022 , 292, 119667	10.3	3
446	Mesenchymal stem cells encapsulated in a reactive oxygen species-scavenging and O2-generating injectable hydrogel for myocardial infarction treatment. <i>Chemical Engineering Journal</i> , 2021 , 133511	14.7	O
445	A tough synthetic hydrogel with excellent post-loading of drugs for promoting the healing of infected wounds in vivo <i>Materials Science and Engineering C</i> , 2021 , 112577	8.3	1
444	An injectable hydrogel dotted with dexamethasone acetate-encapsulated ROS-scavenging micelles for combinatorial therapy of osteoarthritis. <i>Materials Today Nano</i> , 2021 , 100164	9.7	5
443	Alleviating Oxidative Injury of Myocardial Infarction by a Fibrous Polyurethane Patch with Condensed ROS-Scavenging Backbone Units. <i>Advanced Healthcare Materials</i> , 2021 , e2101855	10.1	8
442	Inflammation-modulating nanoparticles for pneumonia therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021 , e1763	9.2	2

(2021-2021)

441	Dimethyl Itaconate-Loaded Nanofibers Rewrite Macrophage Polarization, Reduce Inflammation, and Enhance Repair of Myocardic Infarction. <i>Small</i> , 2021 , 17, e2006992	11	8
440	Large fuzzy biodegradable polyester microspheres with dopamine deposition enhance cell adhesion and bone regeneration in vivo. <i>Biomaterials</i> , 2021 , 272, 120783	15.6	7
439	Conotoxin loaded dextran microgel particles alleviate effects of spinal cord injury by inhibiting neuronal excitotoxicity. <i>Applied Materials Today</i> , 2021 , 23, 101064	6.6	3
438	Spatiotemporal Measurement of Osmotic Pressures by FRET Imaging. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 6488-6495	16.4	3
437	Covalent grafting of hyperbranched poly-L-lysine on Ti-based implants achieves dual functions of antibacteria and promoted osteointegration in vivo. <i>Biomaterials</i> , 2021 , 269, 120534	15.6	29
436	Bone tissue regeneration: The role of finely tuned pore architecture of bioactive scaffolds before clinical translation. <i>Bioactive Materials</i> , 2021 , 6, 1242-1254	16.7	23
435	Adaptable hydrogel with reversible linkages for regenerative medicine: Dynamic mechanical microenvironment for cells. <i>Bioactive Materials</i> , 2021 , 6, 1375-1387	16.7	40
434	Spatiotemporal Measurement of Osmotic Pressures by FRET Imaging. <i>Angewandte Chemie</i> , 2021 , 133, 6562-6569	3.6	O
433	formation of tetraphenylethylene nano-structures on microgels inside living cells reduction-responsive self-assembly. <i>Nanoscale</i> , 2021 , 13, 138-149	7.7	2
432	Reactive oxygen species-responsive and scavenging polyurethane nanoparticles for treatment of osteoarthritis in vivo. <i>Chemical Engineering Journal</i> , 2021 , 409, 128147	14.7	11
431	Artificial osteochondral interface of bioactive fibrous membranes mediating calcified cartilage reconstruction. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 7782-7792	7.3	1
430	Grafting of CAG peptides and (polyethylene glycol) on unsaturated polyurethane films to promote selective adhesion and migration of urethral epithelial cells. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 6201-6211	7.3	2
429	The Dynamic Inflammatory Tissue Microenvironment: Signality and Disease Therapy by Biomaterials. <i>Research</i> , 2021 , 2021, 4189516	7.8	11
428	Immunomodulatory biomaterials and their application in therapies for chronic inflammation-related diseases. <i>Acta Biomaterialia</i> , 2021 , 123, 1-30	10.8	15
427	Stimuli-Sensitive Nanotherapies for the Treatment of Osteoarthritis. <i>Macromolecular Bioscience</i> , 2021 , 21, e2100280	5.5	7
426	Research advances of biomaterials-based microenvironment-regulation therapies for repair and regeneration of spinal cord injury. <i>Biomedical Materials (Bristol)</i> , 2021 , 16,	3.5	4
425	A cell-free ROS-responsive hydrogel/oriented poly(lactide-co-glycolide) hybrid scaffold for reducing inflammation and restoring full-thickness cartilage defects. <i>Biomedical Materials (Bristol)</i> , 2021 , 16,	3.5	5
424	3DICE coding matrix multidirectional macro-architecture modulates cell organization, shape, and co-cultures endothelization network. <i>Biomaterials</i> , 2021 , 277, 121112	15.6	2

423	Fabrication of poly(PEGMA) surface with controllable thickness gradient and its mediation on the gradient adhesion of cells. <i>Journal of Applied Polymer Science</i> , 2021 , 138, 50463	2.9	1
422	Micropatterned Poly(D,L-Lactide-Co-Caprolactone) Conduits With KHI-Peptide and NGF Promote Peripheral Nerve Repair After Severe Traction Injury <i>Frontiers in Bioengineering and Biotechnology</i> , 2021 , 9, 744230	5.8	O
421	A Reactive Oxygen Species Scavenging and O Generating Injectable Hydrogel for Myocardial Infarction Treatment In vivo. <i>Small</i> , 2020 , 16, e2005038	11	31
420	Adsorption of serum proteins on titania nanotubes and its role on regulating adhesion and migration of mesenchymal stem cells. <i>Journal of Biomedical Materials Research - Part A</i> , 2020 , 108, 2305	- 23 18	5
419	Age-Related Regeneration of Osteochondral and Tibial Defects by a Fibrin-Based Construct. <i>Frontiers in Bioengineering and Biotechnology</i> , 2020 , 8, 404	5.8	2
418	A tarsus construct of a novel branched polyethylene with good elasticity for eyelid reconstruction. <i>International Journal of Energy Production and Management</i> , 2020 , 7, 259-269	5.3	O
417	Enhanced regeneration of osteochondral defects by using an aggrecanase-1 responsively degradable and N-cadherin mimetic peptide-conjugated hydrogel loaded with BMSCs. <i>Biomaterials Science</i> , 2020 , 8, 2212-2226	7·4	10
416	Methylcobalamin-Loaded PLCL Conduits Facilitate the Peripheral Nerve Regeneration. <i>Macromolecular Bioscience</i> , 2020 , 20, e1900382	5.5	3
415	Surface-Anchored Graphene Oxide Nanosheets on Cell-Scale Micropatterned Poly(d,l-lactidecaprolactone) Conduits Promote Peripheral Nerve Regeneration. <i>ACS Applied Materials & Discourse Materials &</i>	9.5	28
4 ¹ 4	Advanced Biomaterials and Processing Methods for Liver Regeneration: State-of-the-Art and Future Trends. <i>Advanced Healthcare Materials</i> , 2020 , 9, e1901435	10.1	21
413	The impact of size and surface ligand of gold nanorods on liver cancer accumulation and photothermal therapy in the second near-infrared window. <i>Journal of Colloid and Interface Science</i> , 2020 , 565, 186-196	9.3	24
412	Micro- and nanoparticles-based immunoregulation of macrophages for tissue repair and regeneration. <i>Colloids and Surfaces B: Biointerfaces</i> , 2020 , 192, 111075	6	13
411	Unsaturated polyurethane films grafted with enantiomeric polylysine promotes macrophage polarization to a M2 phenotype through PI3K/Akt1/mTOR axis. <i>Biomaterials</i> , 2020 , 246, 120012	15.6	28
410	Spheroids of Endothelial Cells and Vascular Smooth Muscle Cells Promote Cell Migration in Hyaluronic Acid and Fibrinogen Composite Hydrogels. <i>Research</i> , 2020 , 2020, 8970480	7.8	9
409	Smart Flexible Electronics-Integrated Wound Dressing for Real-Time Monitoring and On-Demand Treatment of Infected Wounds. <i>Advanced Science</i> , 2020 , 7, 1902673	13.6	112
408	Influence of pore architectures of silk fibroin/collagen composite scaffolds on the regeneration of osteochondral defects in vivo. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 391-405	7.3	30
407	ROS-responsive polyurethane fibrous patches loaded with methylprednisolone (MP) for restoring structures and functions of infarcted myocardium in vivo. <i>Biomaterials</i> , 2020 , 232, 119726	15.6	39
406	A hydrogel adhesive fabricated from poly(ethylene glycol) diacrylate and poly(allylamine hydrochloride) with fast and spontaneous degradability and anti-bacterial property. <i>Polymer</i> , 2020 , 186, 122082	3.9	O

405	Morphological and constituent viral-mimicking self-assembled nanoparticles promote cellular uptake and improve cancer therapeutic efficiency in vivo. <i>Giant</i> , 2020 , 3, 100026	5.6	5
404	Antiviral Activity of Nanomaterials against Coronaviruses. <i>Macromolecular Bioscience</i> , 2020 , 20, e200019	9 6 .5	10
403	Dynamic Titania Nanotube Surface Achieves UV-Triggered Charge Reversal and Enhances Cell Differentiation. <i>ACS Applied Materials & Samp; Interfaces</i> , 2019 , 11, 36939-36948	9.5	8
402	Impact of Antifouling PEG Layer on the Performance of Functional Peptides in Regulating Cell Behaviors. <i>Journal of the American Chemical Society</i> , 2019 , 141, 16772-16780	16.4	68
401	Protrusion of nanospikes on cholesterol-containing microgels by reduction-responsive self-assembly in cell milieu and its influence on cell functions. <i>Materials Chemistry Frontiers</i> , 2019 , 3, 233	3-7281	5
400	Construction of Microreactors for Cascade Reaction and Their Potential Applications as Antibacterial Agents. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 6789-6795	9.5	21
399	Optimizing detergent concentration and processing time to balance the decellularization efficiency and properties of bioprosthetic heart valves. <i>Journal of Biomedical Materials Research - Part A</i> , 2019 , 107, 2235-2243	5.4	10
398	A biomimetic tarso-conjunctival biphasic scaffold for eyelid reconstruction in vivo. <i>Biomaterials Science</i> , 2019 , 7, 3373-3385	7.4	0
397	Enhanced peroxidase-like activity of Fe@PCN-224 nanoparticles and their applications for detection of H2O2and glucose. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2019 , 577, 456-463	5.1	43
396	A collagen scaffold loaded with human umbilical cord-derived mesenchymal stem cells facilitates endometrial regeneration and restores fertility. <i>Acta Biomaterialia</i> , 2019 , 92, 160-171	10.8	55
395	UV-Responsive Multilayers with Multiple Functions for Biofilm Destruction and Tissue Regeneration. <i>ACS Applied Materials & Acs Accordance & Accord</i>	9.5	9
394	Nanodiamonds of Different Surface Chemistry Influence the Toxicity and Differentiation of Rat Bone Mesenchymal Stem Cells. <i>Journal of Nanoscience and Nanotechnology</i> , 2019 , 19, 5426-5434	1.3	7
393	ROS-Responsive Nanoparticles for Suppressing the Cytotoxicity and Immunogenicity Caused by PM2.5 Particulates. <i>Biomacromolecules</i> , 2019 , 20, 1777-1788	6.9	13
392	Yolk-porous shell biphasic bioceramic granules enhancing bone regeneration and repair beyond homogenous hybrid. <i>Materials Science and Engineering C</i> , 2019 , 100, 433-444	8.3	4
391	Defined Substrate by Aptamer Modification with the Balanced Properties of Selective Capture and Stemness Maintenance of Mesenchymal Stem Cells. <i>ACS Applied Materials & Design Communication (Natural Stem Cells and Properties of Selective Capture and Stemness Maintenance of Mesenchymal Stem Cells. ACS Applied Materials & Design Communication (Natural Section 2014).</i> 11, 15170-15180	9.5	7
390	Simultaneous enhancement of vascularization and contact-active antibacterial activity in diopside-based ceramic orbital implants. <i>Materials Science and Engineering C</i> , 2019 , 105, 110036	8.3	6
389	Migration of endothelial cells and mesenchymal stem cells into hyaluronic acid hydrogels with different moduli under induction of pro-inflammatory macrophages. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 5478-5489	7.3	20
388	Co-immobilization of CD133 antibodies, vascular endothelial growth factors, and REDV peptide promotes capture, proliferation, and differentiation of endothelial progenitor cells. <i>Acta Biomaterialia</i> 2019 96 137-148	10.8	21

387	Reactive oxygen species (ROS)-responsive biomaterials mediate tissue microenvironments and tissue regeneration. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 5019-5037	7.3	96
386	Selective Adhesion and Directional Migration of Endothelial Cells Guided by Cys-Ala-Gly Peptide Density Gradient on Antifouling Polymer Brushes. <i>Macromolecular Bioscience</i> , 2019 , 19, e1900292	5.5	6
385	Migration of endothelial cells into photo-responsive hydrogels with tunable modulus under the presence of pro-inflammatory macrophages. <i>International Journal of Energy Production and Management</i> , 2019 , 6, 259-267	5.3	8
384	Near-Infrared-Triggered Dynamic Surface Topography for Sequential Modulation of Macrophage Phenotypes. <i>ACS Applied Materials & Acs Acs Acs Acs Acs Acs Acs Acs Acs Acs</i>	9.5	24
383	One-pot synthesis of poly(ethylene glycol) modified zeolitic imidazolate framework-8 nanoparticles: Size control, surface modification and drug encapsulation. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2019 , 568, 224-230	5.1	21
382	Core-Shell Biphasic Microspheres with Tunable Density of Shell Micropores Providing Tailorable Bone Regeneration. <i>Tissue Engineering - Part A</i> , 2019 , 25, 588-602	3.9	8
381	Temperature-Gating Titania Nanotubes Regulate Migration of Endothelial Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 1254-1266	9.5	1
380	Enzyme-responsive multifunctional peptide coating of gold nanorods improves tumor targeting and photothermal therapy efficacy. <i>Acta Biomaterialia</i> , 2019 , 86, 363-372	10.8	37
379	Untangling the response of bone tumor cells and bone forming cells to matrix stiffness and adhesion ligand density by means of hydrogels. <i>Biomaterials</i> , 2019 , 188, 130-143	15.6	32
378	Regeneration of different types of tissues depends on the interplay of stem cells-laden constructs and microenvironments in vivo. <i>Materials Science and Engineering C</i> , 2019 , 94, 938-948	8.3	6
377	Polyrotaxane-based supramolecular theranostics. <i>Nature Communications</i> , 2018 , 9, 766	17.4	138
376	Supramolecular Hybrid Material Constructed from Graphene Oxide and Pillar[6]arene-Based Host-Guest Complex as a Ultrasound and Photoacoustic Signals Nanoamplifier. <i>Materials Horizons</i> , 2018 , 5, 429-435	14.4	46
375	Influences of surface coating of PLGA nanoparticles on immune activation of macrophages. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 2065-2077	7.3	14
374	Surface Modified with a Host Defense Peptide-Mimicking Peptide Polymer Kills Bacteria on Contact with High Efficacy. <i>ACS Applied Materials & Empty Interfaces</i> , 2018 , 10, 15395-15400	9.5	90
373	Design and Applications of Cell-Selective Surfaces and Interfaces. <i>Biomacromolecules</i> , 2018 , 19, 1746-1	7 63 9	23
372	Near-infrared light triggered photothermal and photodynamic therapy with an oxygen-shuttle endoperoxide of anthracene against tumor hypoxia. <i>Polymer Chemistry</i> , 2018 , 9, 2124-2133	4.9	23
371	Inflammatory activation of human serum albumin- or ovalbumin-modified chitosan particles to macrophages and their immune response in human whole blood. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 3096-3106	7.3	5
370	A density gradient of VAPG peptides on a cell-resisting surface achieves selective adhesion and directional migration of smooth muscle cells over fibroblasts. <i>Acta Biomaterialia</i> , 2018 , 72, 70-81	10.8	16

369	Near-infrared light triggered photothermal therapy and enhanced photodynamic therapy with a tumor-targeting hydrogen peroxide shuttle. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 3145-3155	7.3	26
368	Micropatterned poly(d,l-lactide-co-caprolactone) films entrapped with gelatin for promoting the alignment and directional migration of Schwann cells. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 1226-12	2373	13
367	Preparation of photo-responsive poly(ethylene glycol) microparticles and their influence on cell viability. <i>Journal of Colloid and Interface Science</i> , 2018 , 514, 182-189	9.3	6
366	Stromal cell-derived factor-1\(\text{\text{\text{E}}}\) ncapsulated albumin/heparin nanoparticles for induced stem cell migration and intervertebral disc regeneration in vivo. \(Acta Biomaterialia\), \(2018\), 72, 217-227	10.8	24
365	Realizing a Record Photothermal Conversion Efficiency of Spiky Gold Nanoparticles in the Second Near-Infrared Window by Structure-Based Rational Design. <i>Chemistry of Materials</i> , 2018 , 30, 2709-2718	9.6	62
364	Macrophages of Different Phenotypes Influence the Migration of BMSCs in PLGA Scaffolds with Different Pore Size. <i>Biotechnology Journal</i> , 2018 , 13, 1700297	5.6	7
363	Regeneration of the Osteochondral Defect by a Wollastonite and Macroporous Fibrin Biphasic Scaffold. <i>ACS Biomaterials Science and Engineering</i> , 2018 , 4, 1942-1953	5.5	19
362	Regeneration of osteochondral defects in vivo by a cell-free cylindrical poly(lactide-co-glycolide) scaffold with a radially oriented microstructure. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2018 , 12, e1647-e1661	4.4	21
361	Mediating the invasion of smooth muscle cells into a cell-responsive hydrogel under the existence of immune cells. <i>Biomaterials</i> , 2018 , 180, 193-205	15.6	32
360	Supramolecular Polymer-Based Nanomedicine: High Therapeutic Performance and Negligible Long-Term Immunotoxicity. <i>Journal of the American Chemical Society</i> , 2018 , 140, 8005-8019	16.4	168
359	Low-melt bioactive glass-reinforced 3D printing akermanite porous cages with highly improved mechanical properties for lumbar spinal fusion. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2018 , 12, 1149-1162	4.4	7
358	Fabrication of UV responsive micelles-containing multilayers and their influence on cell adhesion. <i>Science China Chemistry</i> , 2018 , 61, 54-63	7.9	7
357	Selective capture of mesenchymal stem cells over fibroblasts and immune cells on E7-modified collagen substrates under flow circumstances. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 165-173	7.3	6
356	Biodegradable Anisotropic Microparticles for Stepwise Cell Adhesion and Preparation of Janus Cell Microparticles. <i>ACS Applied Materials & Samp; Interfaces</i> , 2018 , 10, 36776-36785	9.5	14
355	A discrete organoplatinum(II) metallacage as a multimodality theranostic platform for cancer photochemotherapy. <i>Nature Communications</i> , 2018 , 9, 4335	17.4	118
354	Nonstoichiometric wollastonite bioceramic scaffolds with core-shell pore struts and adjustable mechanical and biodegradable properties. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2018 , 88, 140-149	4.1	11
353	Micropatterned biodegradable polyesters clicked with CQAASIKVAV promote cell alignment, directional migration, and neurite outgrowth. <i>Acta Biomaterialia</i> , 2018 , 74, 143-155	10.8	26
352	Doxorubicin-conjugated pH-responsive gold nanorods for combined photothermal therapy and chemotherapy of cancer. <i>Bioactive Materials</i> , 2018 , 3, 347-354	16.7	47

351	Regulating the migration of smooth muscle cells by a vertically distributed poly(2-hydroxyethyl methacrylate) gradient on polymer brushes covalently immobilized with RGD peptides. <i>Acta Biomaterialia</i> , 2018 , 75, 75-92	10.8	25
350	A novel therapy strategy for bile duct repair using tissue engineering technique: PCL/PLGA bilayered scaffold with hMSCs. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2017 , 11, 966-97	7 6 .4	22
349	Dual Responsive Surfaces Based on HostQuest Interaction for Dynamic Mediation of CellBubstrate Interaction and Cell Migration. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1500865	4.6	17
348	Synthesis of E7 peptide-modified biodegradable polyester with the improving affinity to mesenchymal stem cells. <i>Materials Science and Engineering C</i> , 2017 , 73, 562-568	8.3	12
347	Nicotine hydrogen tartrate loaded chitosan nanoparticles: Formulation, characterization and in vitro delivery from dry powder inhaler formulation. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2017 , 113, 118-131	5.7	15
346	Buildup of hyperbranched polymer/alginate multilayers and their influence on protein adsorption and platelet adhesion. <i>Journal of Applied Polymer Science</i> , 2017 , 134,	2.9	6
345	Non-covalent assembly of poly(allylamine hydrochloride)/triethylamine microcapsules with ionic strength-responsiveness and auto-fluorescence. <i>Journal of Colloid and Interface Science</i> , 2017 , 496, 228-	-2334	6
344	A bioactive hyaluronic acidBased hydrogel cross-linked by DielsAlder reaction for promoting neurite outgrowth of PC12 cells. <i>Journal of Bioactive and Compatible Polymers</i> , 2017 , 32, 382-396	2	9
343	Cytotoxicity of gold nanoparticles with different structures and surface-anchored chiral polymers. <i>Acta Biomaterialia</i> , 2017 , 53, 610-618	10.8	42
342	Amino acid-modified chitosan nanoparticles for Cu chelation to suppress CuO nanoparticle cytotoxicity. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 3521-3530	7-3	13
341	Application of melatonin-loaded poly(N-isopropylacrylamide) hydrogel particles to reduce the toxicity of airborne pollutes to RAW264.7 cells. <i>Journal of Colloid and Interface Science</i> , 2017 , 490, 181-1	183	15
340	Fabrication of polyurethane microcapsules with different shapes and their influence on cellular internalization. <i>Colloids and Surfaces B: Biointerfaces</i> , 2017 , 158, 675-681	6	8
339	Induced migration of endothelial cells into 3D scaffolds by chemoattractants secreted by pro-inflammatory macrophages. <i>International Journal of Energy Production and Management</i> , 2017 , 4, 139-148	5.3	15
338	Poly(l-lactide) melt spun fiber-aligned scaffolds coated with collagen or chitosan for guiding the directional migration of osteoblasts in vitro. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 5176-5188	7.3	20
337	Morphology transformation of self-assembled organic nanomaterials in aqueous solution induced by stimuli-triggered chemical structure changes. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 16059-16104	13	47
336	Controlling the selective and directional migration of hepatocytes by a complementary density gradient of glycosylated hyperbranched polymers and poly(ethylene glycol) molecules. <i>Acta Biomaterialia</i> , 2017 , 56, 161-170	10.8	17
335	Influences of size and surface coating of gold nanoparticles on inflammatory activation of macrophages. <i>Colloids and Surfaces B: Biointerfaces</i> , 2017 , 160, 372-380	6	27
334	assembly of fibrinogen/hyaluronic acid hydrogel via knob-hole interaction for 3D cellular engineering. <i>Bioactive Materials</i> , 2017 , 2, 253-259	16.7	12

333	Antitumor Activity of a Unique Polymer That Incorporates a Fluorescent Self-Assembled Metallacycle. <i>Journal of the American Chemical Society</i> , 2017 , 139, 15940-15949	16.4	172
332	Self-assembled composite microparticles with surface protrudent porphyrin nanoparticles enhance cellular uptake and photodynamic therapy. <i>Materials Horizons</i> , 2017 , 4, 1135-1144	14.4	13
331	Phototriggered N-Generating Submicron Particles for Selective Killing of Cancer Cells. <i>ACS Applied Materials & Comp.; Interfaces</i> , 2017 , 9, 44369-44376	9.5	4
330	Photo-Decomposable Sub-Micrometer Albumin Particles Cross-Linked by ortho-Nitrobenzyl Derivatives. <i>Macromolecular Chemistry and Physics</i> , 2017 , 218, 1700413	2.6	4
329	A photo-cleavable polyprodrug-loaded wound dressing with UV-responsive antibacterial property. Journal of Materials Chemistry B, 2017 , 5, 8975-8982	7-3	31
328	Influence of protein adsorption on the cellular uptake of AuNPs conjugated with chiral oligomers. Materials Chemistry Frontiers, 2017, 1, 542-549	7.8	8
327	Gene-activated matrix/bone marrow-derived mesenchymal stem cells constructs regenerate sweat glands-like structure in vivo. <i>Scientific Reports</i> , 2017 , 7, 17630	4.9	10
326	A biomimetic collagen/heparin multi-layered porous hydroxyapatite orbital implant for in vivo vascularization studies on the chicken chorioallantoic membrane. <i>Graefels Archive for Clinical and Experimental Ophthalmology</i> , 2016 , 254, 83-9	3.8	10
325	Simultaneous mechanical property and biodegradation improvement of wollastonite bioceramic through magnesium dilute doping. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2016 , 54, 60-71	4.1	48
324	Cell-Free HA-MA/PLGA Scaffolds with Radially Oriented Pores for In Situ Inductive Regeneration of Full Thickness Cartilage Defects. <i>Macromolecular Bioscience</i> , 2016 , 16, 1632-1642	5.5	22
323	Rational Design and Fabrication of Porous Calcium-Magnesium Silicate Constructs That Enhance Angiogenesis and Improve Orbital Implantation. <i>ACS Biomaterials Science and Engineering</i> , 2016 , 2, 1519-	⁵ 1527	16
322	FeO/BSA particles induce osteogenic differentiation of mesenchymal stem cells under static magnetic field. <i>Acta Biomaterialia</i> , 2016 , 46, 141-150	10.8	43
321	Gold nanoparticles with surface-anchored chiral poly(acryloyl-L(D)-valine) induce differential response on mesenchymal stem cell osteogenesis. <i>Nano Research</i> , 2016 , 9, 3683-3694	10	34
320	Fabrication of a Targeted Drug Delivery System from a Pillar[5]arene-Based Supramolecular Diblock Copolymeric Amphiphile for Effective Cancer Therapy. <i>Advanced Functional Materials</i> , 2016 , 26, 8999-9008	15.6	91
319	Influence of titanium dioxide nanorods with different surface chemistry on the differentiation of rat bone marrow mesenchymal stem cells. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 6955-6966	7.3	12
318	Surface-anchored poly(acryloyl-L(D)-valine) with enhanced chirality-selective effect on cellular uptake of gold nanoparticles. <i>Scientific Reports</i> , 2016 , 6, 31595	4.9	31
317	In vivo vascularization of MSC-loaded porous hydroxyapatite constructs coated with VEGF-functionalized collagen/heparin multilayers. <i>Scientific Reports</i> , 2016 , 6, 19871	4.9	26
316	Enhanced Cellular Uptake of Bowl-like Microcapsules. <i>ACS Applied Materials & Description</i> 11210-4	9.5	32

315	Influence of Albumin Configuration by the Chiral Polymer-Grafted Gold Nanoparticles. <i>Langmuir</i> , 2016 , 32, 5608-16	4	17
314	Dual-responsive colloidal microcapsules based on host-guest interaction on solid templates. <i>Journal of Colloid and Interface Science</i> , 2016 , 475, 196-202	9.3	7
313	Cell-free macro-porous fibrin scaffolds for in situ inductive regeneration of full-thickness cartilage defects. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 4410-4419	7.3	26
312	Citrate-capped iron oxide nanoparticles impair the osteogenic differentiation potential of rat mesenchymal stem cells. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 245-256	7-3	20
311	Design and evaluation of multifunctional antibacterial ion-doped Edicalcium silicate cements favorable for root canal sealing. <i>RSC Advances</i> , 2016 , 6, 19707-19715	3.7	6
310	Polyamine/salt-assembled microspheres coated with hyaluronic acid for targeting and pH sensing. <i>Colloids and Surfaces B: Biointerfaces</i> , 2016 , 142, 223-229	6	9
309	Photo-responsive polyethyleneimine microcapsules cross-linked by ortho-nitrobenzyl derivatives. Journal of Colloid and Interface Science, 2016 , 463, 22-8	9.3	15
308	Functionalized Nanomaterials 2016 , 123-150		
307	Synthesis of Chiral Oligomer-Grafted Biodegradable Polyurethanes and Their Chiral-Dependent Influence on Bone Marrow Stem Cell Behaviors. <i>Macromolecular Rapid Communications</i> , 2016 , 37, 1331-	6 ^{4.8}	12
306	In vivo stability of protein coatings on poly lactic co glycolic nanoparticles. MRS Advances, 2016 , 1, 3767	-337 7 3	2
305	Preparation of complementary glycosylated hyperbranched polymer/poly(ethylene glycol) brushes and their selective interactions with hepatocytes. <i>Colloids and Surfaces B: Biointerfaces</i> , 2016 , 145, 309-3	398	5
304	Cellular uptake of poly(allylamine hydrochloride) microcapsules with different deformability and its influence on cell functions. <i>Journal of Colloid and Interface Science</i> , 2016 , 465, 149-57	9.3	13
303	Aligned PLLA nanofibrous scaffolds coated with graphene oxide for promoting neural cell growth. <i>Acta Biomaterialia</i> , 2016 , 37, 131-42	10.8	180
302	Suppressing the cytotoxicity of CuO nanoparticles by uptake of curcumin/BSA particles. <i>Nanoscale</i> , 2016 , 8, 9572-82	7.7	24
301	Genotoxicity of Copper Oxide Nanoparticles with Different Surface Chemistry on Rat Bone Marrow Mesenchymal Stem Cells. <i>Journal of Nanoscience and Nanotechnology</i> , 2016 , 16, 5489-97	1.3	10
300	Encapsulation of a photosensitizer into cell membrane capsules for photodynamic therapy. <i>RSC Advances</i> , 2016 , 6, 37212-37220	3.7	19
299	Recent advances in interactions of designed nanoparticles and cells with respect to cellular uptake, intracellular fate, degradation and cytotoxicity. <i>Nanotechnology</i> , 2016 , 27, 412002	3.4	25
298	An Introduction to Scaffolds, Biomaterial Surfaces, and Stem Cells 2016 , 1-37		

297 Skin Regeneration **2016**, 289-313

297	Skin Regeneration 2016 , 289-313		
296	Multilayer Microcapsules with Tailored Structures and Properties as Delivery Carriers for Drugs and Growth Factors 2016 , 75-99		1
295	Gradient Biomaterials and Their Impact on Cell Migration 2016 , 151-185		
294	Cartilage Regeneration 2016 , 255-287		1
293	Preparation of an Arg-Glu-Asp-Val Peptide Density Gradient on Hyaluronic Acid-Coated Poly(Etaprolactone) Film and Its Influence on the Selective Adhesion and Directional Migration of Endothelial Cells. <i>ACS Applied Materials & Samp; Interfaces</i> , 2016 , 8, 29280-29288	9.5	52
292	Role of adsorbed proteins on hydroxyapatite-coated titanium in osteoblast adhesion and osteogenic differentiation. <i>Science Bulletin</i> , 2015 , 60, 691-700	10.6	14
291	Protein adsorption and cellular uptake of AuNPs capped with alkyl acids of different length. <i>RSC Advances</i> , 2015 , 5, 22792-22801	3.7	11
290	Shape Transformation of Light-Responsive Pyrene-Containing Micelles and Their Influence on Cytoviability. <i>Biomacromolecules</i> , 2015 , 16, 2276-81	6.9	27
289	Preparation of novel porphyrin nanomaterials based on the pH-responsive shape evolution of porphyrin microspheres. <i>Langmuir</i> , 2015 , 31, 4330-40	4	15
288	Preparation of gelatin density gradient on poly(Etaprolactone) membrane and its influence on adhesion and migration of endothelial cells. <i>Journal of Colloid and Interface Science</i> , 2015 , 451, 177-83	9.3	21
287	A complementary density gradient of zwitterionic polymer brushes and NCAM peptides for selectively controlling directional migration of Schwann cells. <i>Biomaterials</i> , 2015 , 56, 58-67	15.6	56
286	Bioactive and Spatially Organized LbL Films 2015 , 79-102		1
285	Influence of bovine serum albumin coated poly(lactic-co-glycolic acid) particles on differentiation of mesenchymal stem cells. <i>RSC Advances</i> , 2015 , 5, 40924-40931	3.7	25
284	Combinational effect of matrix elasticity and alendronate density on differentiation of rat mesenchymal stem cells. <i>Acta Biomaterialia</i> , 2015 , 19, 76-84	10.8	46
283	Synthesis and characterization of biodegradable polyurethanes with unsaturated carbon bonds based on poly(propylene fumarate). <i>Journal of Applied Polymer Science</i> , 2015 , 132, n/a-n/a	2.9	13
282	Monitoring the intracellular transformation process of surface-cleavable PLGA particles containing disulfide bonds by fluorescence resonance energy transfer. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 8865-8873	7:3	9
281	A primary study of poly(propylene fumarate)-2-hydroxyethyl methacrylate copolymer scaffolds for tarsal plate repair and reconstruction in rabbit eyelids. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 4052-4	10763	16
280	Biomaterials for in situ tissue regeneration: development and perspectives. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 8921-8938	7.3	62

279	Preparation of elastic polyurethane microcapsules using CaCO3 microparticles as templates for hydrophobic substances loading. <i>RSC Advances</i> , 2015 , 5, 5775-5780	3.7	10
278	Bioengineering Skin Constructs 2015 , 703-719		1
277	Adsorption of fibronectin on salt-etched polyelectrolyte multilayers and its roles in mediating the adhesion and migration of vascular smooth muscle cells. <i>Macromolecular Bioscience</i> , 2015 , 15, 241-52	5.5	13
276	Recent advances in cell imaging and cytotoxicity of intracellular stimuli-responsive nanomaterials. <i>Science Bulletin</i> , 2015 , 60, 1973-1979	10.6	24
275	Bioactive glass-reinforced bioceramic ink writing scaffolds: sintering, microstructure and mechanical behavior. <i>Biofabrication</i> , 2015 , 7, 035010	10.5	46
274	The correlation between fibronectin adsorption and attachment of vascular cells on heparinized polycaprolactone membrane. <i>Journal of Colloid and Interface Science</i> , 2015 , 448, 231-7	9.3	16
273	Fabrication of Pyrene and Tetraphenylethylene Nanostructures by a Hydrolysis-Assisted Co-Assembly. <i>Chinese Journal of Chemistry</i> , 2015 , 33, 207-212	4.9	
272	Uptake of cerium oxide nanoparticles and its influence on functions of mouse leukemic monocyte macrophages. <i>Journal of Nanoparticle Research</i> , 2015 , 17, 1	2.3	5
271	Polyelectrolyte Multilayer Patterns Created by Capillary Force and Their Impact on Cell Migration. <i>Chinese Journal of Chemistry</i> , 2014 , 32, 66-72	4.9	8
270	A quantitative study of the intracellular concentration of graphene/noble metal nanoparticle composites and their cytotoxicity. <i>Nanoscale</i> , 2014 , 6, 8535-42	7.7	58
269	Synthesis of poly(ester-carbonate) with a pendant acetylcholine analog for promoting neurite growth. <i>Acta Biomaterialia</i> , 2014 , 10, 4127-35	10.8	6
268	Nanoparticle/Polymer assembled microcapsules with pH sensing property. <i>Macromolecular Bioscience</i> , 2014 , 14, 1495-504	5.5	9
267	Poly(lactide-co-glycolide)/fibrin gel construct as a 3D model to evaluate gene therapy of cartilage in vivo. <i>Molecular Pharmaceutics</i> , 2014 , 11, 2062-70	5.6	18
266	Complementary density gradient of Poly(hydroxyethyl methacrylate) and YIGSR selectively guides migration of endotheliocytes. <i>Biomacromolecules</i> , 2014 , 15, 2256-64	6.9	45
265	Preparation of TAT peptide-modified poly(N-isopropylacrylamide) microgel particles and their cellular uptake, intracellular distribution, and influence on cytoviability in response to temperature change. <i>Journal of Colloid and Interface Science</i> , 2014 , 434, 122-9	9.3	22
264	Uptake, Biological Fate, and Toxicity of Metal Oxide Nanoparticles. <i>Particle and Particle Systems Characterization</i> , 2014 , 31, 24-35	3.1	36
263	Design of gene-activated matrix for the repair of skin and cartilage. <i>Polymer Journal</i> , 2014 , 46, 476-482	2.7	19
262	A correlation study of protein adsorption and cell behaviors on substrates with different densities of PEG chains. <i>Colloids and Surfaces B: Biointerfaces</i> , 2014 , 122, 134-142	6	54

261	Fabrication of biconcave discoidal silica capsules and their uptake behavior by smooth muscle cells. Journal of Colloid and Interface Science, 2014 , 426, 124-30	9.3	5	
260	Comparison studies of the in vivo treatment of full-thickness excisional wounds and burns by an artificial bilayer dermal equivalent and J-1 acellular dermal matrix. <i>Wound Repair and Regeneration</i> , 2014 , 22, 390-8	3.6	17	
259	Decomposition and transformation of pyrene-derivative micelles at intracellular milieu and their influence on cytoviability. <i>Macromolecular Bioscience</i> , 2014 , 14, 1748-54	5.5	8	
258	Toxicity of ZnO nanoparticles to macrophages due to cell uptake and intracellular release of zinc ions. <i>Journal of Nanoscience and Nanotechnology</i> , 2014 , 14, 5688-96	1.3	60	
257	Adsorption of plasma proteins and fibronectin on poly(hydroxylethyl methacrylate) brushes of different thickness and their relationship with adhesion and migration of vascular smooth muscle cells. <i>International Journal of Energy Production and Management</i> , 2014 , 1, 17-25	5.3	24	
256	Influence of surface coatings of poly(d,l-lactide-co-glycolide) particles on HepG2 cell behavior and particle fate. <i>Biointerphases</i> , 2014 , 9, 031015	1.8		
255	Synthesis of functionalized poly(ester carbonate) with laminin-derived peptide for promoting neurite outgrowth of PC12 cells. <i>Macromolecular Bioscience</i> , 2014 , 14, 1429-36	5.5	18	
254	Influence of the molecular weight of poly(lactide-co-glycolide) on the in vivo cartilage repair by a construct of poly(lactide-co-glycolide)/fibrin gel/mesenchymal stem cells/transforming growth factor-11. Tissue Engineering - Part A, 2014, 20, 1-11	3.9	13	
253	Immobilization of enzymes on 2-hydroxyethyl methacrylate and glycidyl methacrylate copolymer brushes. <i>Chemistry - an Asian Journal</i> , 2014 , 9, 2132-9	4.5	16	
252	Enhanced bioactivity of transform growth factor-II from sulfated chitosan microspheres for in vitro chondrogenesis of mesenchymal stem cells. <i>Pure and Applied Chemistry</i> , 2014 , 86, 1885-1895	2.1	3	
251	Biotin-triggered release and transfection of DNA complexes immobilized on a substrate via biotin Biotin Interaction. <i>Journal of Bioactive and Compatible Polymers</i> , 2014 , 29, 221-234	2	4	
250	The interaction between 1 integrins and ERK1/2 in osteogenic differentiation of human mesenchymal stem cells under fluid shear stress modelled by a perfusion system. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2014 , 8, 85-96	4.4	36	
249	A density gradient of basic fibroblast growth factor guides directional migration of vascular smooth muscle cells. <i>Colloids and Surfaces B: Biointerfaces</i> , 2014 , 117, 290-5	6	16	
248	Fabrication of triple-labeled polyelectrolyte microcapsules for localized ratiometric pH sensing. Journal of Colloid and Interface Science, 2014 , 416, 252-7	9.3	24	
247	Zeolite molecular sieve 5A acts as a reinforcing filler, altering the morphological, mechanical, and thermal properties of chitosan. <i>Journal of Materials Science</i> , 2013 , 48, 3926-3935	4.3	11	
246	Lipid layer engineering of poly(lactide-co-glycolide) nanoparticles to control their uptake and intracellular co-localisation. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 2252-2259	7.3	8	
245	Molecular interactions of different size AuNP-COOH nanoparticles with human fibrinogen. <i>Nanoscale</i> , 2013 , 5, 8130-7	7.7	45	
244	Influence of structure and properties of colloidal biomaterials on cellular uptake and cell functions. <i>Biomaterials Science</i> , 2013 , 1, 896-911	7.4	59	

243	Fabrication of red-blood-cell-like polyelectrolyte microcapsules and their deformation and recovery behavior through a microcapillary. <i>Advanced Materials</i> , 2013 , 25, 5814-8	24	68
242	Preparation of polycaprolactone microspheres-aggregated scaffold with ultra big pores and fuzzy sphere surface by a one-step phase separation method. <i>Journal of Biomedical Materials Research - Part A</i> , 2013 , 101, 3219-27	5.4	5
241	Study of the selective uptake progress of aptamer-modified PLGA particles by liver cells. <i>Macromolecular Bioscience</i> , 2013 , 13, 1413-21	5.5	16
240	Biomimetic preparation of trace element-codoped calcium phosphate for promoting osteoporotic bone defect repair. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 1316-1325	7.3	13
239	Polycaprolactone scaffolds or anisotropic particles: The initial solution temperature dependence in a gelatin particle-leaching method. <i>Polymer</i> , 2013 , 54, 277-283	3.9	7
238	Modulating the nanorods protrusion from poly(allylamine hydrochloride)-g-pyrene microcapsules by 1-pyrenesulfonic acid sodium salt. <i>Journal of Colloid and Interface Science</i> , 2013 , 405, 10-6	9.3	2
237	Directional migration of vascular smooth muscle cells guided by a molecule weight gradient of poly(2-hydroxyethyl methacrylate) brushes. <i>Langmuir</i> , 2013 , 29, 6386-95	4	51
236	Aminolysis-based surface modification of polyesters for biomedical applications. <i>RSC Advances</i> , 2013 , 3, 2509-2519	3.7	91
235	The roles of knitted mesh-reinforced collagen-chitosan hybrid scaffold in the one-step repair of full-thickness skin defects in rats. <i>Acta Biomaterialia</i> , 2013 , 9, 7822-32	10.8	73
234	Unidirectional migration of single smooth muscle cells under the synergetic effects of gradient swelling cue and parallel groove patterns. <i>Colloids and Surfaces B: Biointerfaces</i> , 2013 , 111, 1-6	6	22
233	Directional cell migration through cell-cell interaction on polyelectrolyte multilayers with swelling gradients. <i>Biomaterials</i> , 2013 , 34, 975-84	15.6	55
232	RNAi functionalized collagen-chitosan/silicone membrane bilayer dermal equivalent for full-thickness skin regeneration with inhibited scarring. <i>Biomaterials</i> , 2013 , 34, 2038-48	15.6	53
231	Biological identity of nanomaterials: Opportunities and challenges. <i>Science China Chemistry</i> , 2013 , 56, 1533-1541	7.9	22
230	Control over the gradient differentiation of rat BMSCs on a PCL membrane with surface-immobilized alendronate gradient. <i>Biomacromolecules</i> , 2013 , 14, 342-9	6.9	43
229	Conjugation of basic fibroblast growth factor on a heparin gradient for regulating the migration of different types of cells. <i>Bioconjugate Chemistry</i> , 2013 , 24, 1302-13	6.3	14
228	Uptake of cerium oxide nanoparticles and their influences on functions of A549 cells. <i>Journal of Nanoscience and Nanotechnology</i> , 2013 , 13, 204-15	1.3	16
227	Effect of N/P ratios on physicochemical stability, cellular association, and gene silencing efficiency for trimethyl chitosan/small interfering RNA complexes. <i>Journal of Bioactive and Compatible Polymers</i> , 2013 , 28, 590-604	2	1
226	Directional migration of vascular smooth muscle cells guided by synergetic surface gradient and chemical pattern of poly(ethylene glycol) brushes. <i>Journal of Bioactive and Compatible Polymers</i> , 2013 , 28, 605-620	2	9

(2012-2013)

225	poly(ethylene oxide)-b-poly(L-lysine)/TGF-II plasmid DNA complexes for cartilage restoration in vivo. <i>Journal of Biomedical Materials Research - Part A</i> , 2013 , 101, 3097-108	5.4	20	
224	RNAi functionalized scaffold for scarless skin regeneration. <i>Organogenesis</i> , 2013 , 9, 76-8	1.7	10	
223	Functionalized Nanomaterials 2013 , 581-609			
222	Shell modulation by tailoring substituents in chitosan for LbL-assembled microcapsules. <i>Journal of Colloid and Interface Science</i> , 2012 , 372, 40-4	9.3	9	
221	Fabrication and characterization of poly(L-lactide-co-glycolide) knitted mesh-reinforced collagen-chitosan hybrid scaffolds for dermal tissue engineering. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2012 , 8, 204-15	4.1	52	
220	Fabrication of chitosan single-component microcapsules with a micrometer-thick and layered wall structure by stepwise core-mediated precipitation. <i>Macromolecular Rapid Communications</i> , 2012 , 33, 326-31	4.8	8	
219	Restoration of rat calvarial defects by poly(lactide-co-glycolide)/hydroxyapatite scaffolds loaded with bone mesenchymal stem cells and DNA complexes. <i>Science Bulletin</i> , 2012 , 57, 435-444		7	
218	One-step controlled precipitation to fabricate glucose-responsive microcapsules. <i>Colloid and Polymer Science</i> , 2012 , 290, 233-240	2.4	5	
217	Influence of surface coating of PLGA particles on the internalization and functions of human endothelial cells. <i>Biomacromolecules</i> , 2012 , 13, 3272-82	6.9	53	
216	Bovine serum albumin nanoparticles modified with multilayers and aptamers for pH-responsive and targeted anti-cancer drug delivery. <i>Journal of Materials Chemistry</i> , 2012 , 22, 6053		80	
215	Repeated protrusion of fluorescent pyrene nanorods on the surface of crosslinked poly(allylamine hydrochloride) microcapsules. <i>RSC Advances</i> , 2012 , 2, 11354	3.7	7	
214	In situ fabrication of pyrene derivative nanorods inside polyelectrolytes microcapsules with tunable fluorescent properties. <i>Journal of Materials Chemistry</i> , 2012 , 22, 2855		13	
213	Shape deformation and recovery of multilayer microcapsules after being squeezed through a microchannel. <i>Langmuir</i> , 2012 , 28, 5010-6	4	44	
212	Modulating the structure and properties of poly(sodium 4-styrenesulfonate)/poly(diallyldimethylammonium chloride) multilayers with concentrated salt solutions. <i>Langmuir</i> , 2012 , 28, 193-9	4	50	
211	Gradient biomaterials and their influences on cell migration. <i>Interface Focus</i> , 2012 , 2, 337-55	3.9	103	
210	Preparation and structure evolution of bowknot-like calcium carbonate particles in the presence of poly(sodium 4-styrene sulfate). <i>Journal of Colloid and Interface Science</i> , 2012 , 385, 274-81	9.3	10	
209	Cellular uptake of covalent poly(allylamine hydrochloride) microcapsules and its influences on cell functions. <i>Macromolecular Bioscience</i> , 2012 , 12, 1534-45	5.5	31	
208	Encapsulation of photosensitizer into multilayer microcapsules by combination of spontaneous deposition and heat-induced shrinkage for photodynamic therapy. <i>Macromolecular Bioscience</i> , 2012 , 12, 1436-42	5.5	15	

207	Responsive polyelectrolyte multilayers assembled at high ionic strength with an unusual collapse at low ionic strength. <i>Macromolecular Rapid Communications</i> , 2012 , 33, 1964-9	4.8	21
206	Phenomenon and mechanism of capsule shrinking in alkaline solution containing calcium ions. Journal of Physical Chemistry B, 2012 , 116, 13561-7	3.4	9
205	Facile fabrication of the glutaraldehyde cross-linked collagen/chitosan porous scaffold for skin tissue engineering. <i>Materials Science and Engineering C</i> , 2012 , 32, 2361-2366	8.3	91
204	Uptake of hydrogel particles with different stiffness and its influence on HepG2 cell functions. <i>Soft Matter</i> , 2012 , 8, 9235	3.6	82
203	In-depth study on aminolysis of poly(e-caprolactone): Back to the fundamentals. <i>Science China Chemistry</i> , 2012 , 55, 2419-2427	7.9	31
202	Preparation and cellular uptake of PLGA particles loaded with lamivudine. <i>Science Bulletin</i> , 2012 , 57, 3985-3993		17
201	Hepatogenic engineering from human bone marrow mesenchymal stem cells in porous polylactic glycolic acid scaffolds under perfusion culture. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2012 , 6, 29-39	4.4	10
200	Decomposition-assembly of tetraphenylethylene nanoparticles with uniform size and aggregation-induced emission property. <i>Macromolecular Rapid Communications</i> , 2012 , 33, 1584-9	4.8	18
199	Fabrication of poly(lactide-co-glycolide) scaffold embedded spatially with hydroxyapatite particles on pore walls for bone tissue engineering. <i>Polymers for Advanced Technologies</i> , 2012 , 23, 1446-1453	3.2	18
198	Enhancement of osteogenesis by poly(lactide-co-glycolide) sponges loaded with surface-embedded hydroxyapatite particles and rhBMP-2. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2012 , 100, 1103-13	3.5	9
197	Mineralization of Collagen-Coated Electrospun Poly(lactide-co-glycolide) Nanofibrous Mesh to Enhance Growth and Differentiation of Osteoblasts and Bone Marrow Mesenchymal Stem Cells. <i>Advanced Engineering Materials</i> , 2012 , 14, B123-B137	3.5	13
196	Layer-by-layer assembly of microcapsules and their biomedical applications. <i>Chemical Society Reviews</i> , 2012 , 41, 6103-24	58.5	354
195	Polycaprolactone scaffold modified with galactosylated chitosan for hepatocyte culture. <i>Macromolecular Research</i> , 2012 , 20, 283-291	1.9	19
194	Different effects of intermittent and continuous fluid shear stresses on osteogenic differentiation of human mesenchymal stem cells. <i>Biomechanics and Modeling in Mechanobiology</i> , 2012 , 11, 391-401	3.8	41
193	Stability of polyelectrolyte multilayer micropatterns in response to post-treatments. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2012 , 396, 299-304	5.1	17
192	Controlling the migration behaviors of vascular smooth muscle cells by methoxy poly(ethylene glycol) brushes of different molecular weight and density. <i>Biomaterials</i> , 2012 , 33, 810-20	15.6	72
191	Influences of surface chemistry and swelling of salt-treated polyelectrolyte multilayers on migration of smooth muscle cells. <i>Journal of the Royal Society Interface</i> , 2012 , 9, 3455-68	4.1	30
190	On the structure alteration of crosslinkable gelatin coupled with methacrylic acid and its hydrogel. <i>E-Polymers</i> , 2012 , 12,	2.7	1

189	REPARATION OF SULFONATED CHITOSAN AND ITS ABILITY TO PROTECT bFGF ACTIVITES. <i>Acta Polymerica Sinica</i> , 2012 , 012, 418-426		5
188	Molecular-engineered polymeric microcapsules assembled from Concanavalin A and glycogen with specific responses to carbohydrates. <i>Soft Matter</i> , 2011 , 7, 5805	3.6	49
187	Chitosan-Based Biomaterials for Tissue Repair and Regeneration. <i>Advances in Polymer Science</i> , 2011 , 81-127	1.3	98
186	Extracellular signal-regulated kinase1/2 activated by fluid shear stress promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells through novel signaling pathways. <i>International Journal of Biochemistry and Cell Biology</i> , 2011 , 43, 1591-601	5.6	28
185	Nanotubes protruding from poly(allylamine hydrochloride)-graft-pyrene microcapsules. <i>ACS Nano</i> , 2011 , 5, 3930-6	16.7	37
184	Polymeric Biomaterials for Tissue Engineering Applications 2011. <i>International Journal of Polymer Science</i> , 2011 , 2011, 1-2	2.4	17
183	Applications of knitted mesh fabrication techniques to scaffolds for tissue engineering and regenerative medicine. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2011 , 4, 922-32	4.1	57
182	Chemically cross-linked chitosan hydrogel loaded with gelatin for chondrocyte encapsulation. <i>Biotechnology Journal</i> , 2011 , 6, 1388-96	5.6	16
181	Poly(lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering. <i>Journal of Materials Science: Materials in Medicine</i> , 2011 , 22, 1873-84	4.5	146
180	Influences of acid-treated multiwalled carbon nanotubes on fibroblasts: proliferation, adhesion, migration, and wound healing. <i>Annals of Biomedical Engineering</i> , 2011 , 39, 414-26	4.7	40
179	Electrospinning of chitosan nanofibers: The favorable effect of metal ions. <i>Carbohydrate Polymers</i> , 2011 , 84, 239-246	10.3	63
178	Gradient immobilization of a cell adhesion RGD peptide on thermal responsive surface for regulating cell adhesion and detachment. <i>Colloids and Surfaces B: Biointerfaces</i> , 2011 , 85, 12-8	6	61
177	Surface-grafted block copolymer brushes with continuous composition gradients of poly(poly(ethylene glycol)-monomethacrylate) and poly(N-isopropylacrylamide). <i>Science China Chemistry</i> , 2011 , 54, 334-342	7.9	14
176	Influence of folate conjugation on the cellular uptake degree of poly(allylamine hydrochloride) microcapsules. <i>Journal of Applied Polymer Science</i> , 2011 , 121, 3710-3716	2.9	6
175	High efficient loading and controlled release of low-molecular-weight drugs by combination of spontaneous deposition and heat-induced shrinkage of multilayer capsules. <i>Soft Matter</i> , 2011 , 7, 8258	3.6	40
174	Preparation and redox-controlled reversible response of ferrocene-modified poly(allylamine hydrochloride) microcapsules. <i>Langmuir</i> , 2011 , 27, 1286-91	4	37
173	CoreBhell Poly(allyamine hydrochloride)-Pyrene Nanorods Decorated with Gold Nanoparticles. <i>Chemistry of Materials</i> , 2011 , 23, 4741-4747	9.6	27
172	Hybrid calcium phosphate coatings with the addition of trace elements and polyaspartic acid by a low-thermal process. <i>Biomedical Materials (Bristol)</i> , 2011 , 6, 035002	3.5	9

171	Biological hydrogel synthesized from hyaluronic acid, gelatin and chondroitin sulfate by click chemistry. <i>Acta Biomaterialia</i> , 2011 , 7, 1618-26	10.8	122
170	The healing of full-thickness burns treated by using plasmid DNA encoding VEGF-165 activated collagen-chitosan dermal equivalents. <i>Biomaterials</i> , 2011 , 32, 1019-31	15.6	113
169	Influence of assembly pH on compression and Ag nanoparticle synthesis of polyelectrolyte multilayers. <i>Journal of Colloid and Interface Science</i> , 2011 , 355, 368-73	9.3	19
168	Functionalized Nanomaterials 2011 , 493-521		
167	Polymeric Biomaterials for Tissue Engineering Applications. <i>International Journal of Polymer Science</i> , 2010 , 2010, 1-2	2.4	4
166	3D PLGA scaffolds improve differentiation and function of bone marrow mesenchymal stem cell-derived hepatocytes. <i>Stem Cells and Development</i> , 2010 , 19, 1427-36	4.4	85
165	Surface engineered Poly(lactide-co-glycolide) nanoparticles for intracellular delivery: uptake and cytotoxicitya confocal raman microscopic study. <i>Biomacromolecules</i> , 2010 , 11, 2993-9	6.9	55
164	Facile Synthesis of Octacalcium Phosphate Nanobelts: Growth Mechanism and Surface Adsorption Properties. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 6265-6271	3.8	31
163	Proliferation and osteogenesis of immortalized bone marrow-derived mesenchymal stem cells in porous polylactic glycolic acid scaffolds under perfusion culture. <i>Journal of Biomedical Materials Research - Part A</i> , 2010 , 92, 817-29	5.4	23
162	The restoration of full-thickness cartilage defects with BMSCs and TGF-beta 1 loaded PLGA/fibrin gel constructs. <i>Biomaterials</i> , 2010 , 31, 8964-73	15.6	127
161	Preparation and characterization of trace elements-multidoped injectable biomimetic materials for minimally invasive treatment of osteoporotic bone trauma. <i>Journal of Biomedical Materials Research - Part A</i> , 2010 , 95, 1170-81	5.4	15
160	Folic Acid Modified Poly(lactide-co-glycolide) Nanoparticles, Layer-by-Layer Surface Engineered for Targeted Delivery. <i>Macromolecular Chemistry and Physics</i> , 2010 , 211, 404-411	2.6	35
159	Force-Free Patterning of Polyelectrolyte Multilayers under Solvent Assistance. <i>Macromolecular Materials and Engineering</i> , 2010 , 295, 716-725	3.9	4
158	Micelles-encapsulated microcapsules for sequential loading of hydrophobic and water-soluble drugs. <i>Macromolecular Rapid Communications</i> , 2010 , 31, 1015-9	4.8	39
157	Fabrication of diverse microcapsule arrays of high density and good stability. <i>Macromolecular Rapid Communications</i> , 2010 , 31, 1065-70	4.8	6
156	The design of biodegradable microcarriers for induced cell aggregation. <i>Macromolecular Bioscience</i> , 2010 , 10, 156-63	5.5	41
155	Layer by layer chitosan/alginate coatings on poly(lactide-co-glycolide) nanoparticles for antifouling protection and Folic acid binding to achieve selective cell targeting. <i>Journal of Colloid and Interface Science</i> , 2010 , 345, 241-7	9.3	131
154	In vivo restoration of full-thickness cartilage defects by poly(lactide-co-glycolide) sponges filled with fibrin gel, bone marrow mesenchymal stem cells and DNA complexes. <i>Biomaterials</i> , 2010 , 31, 5953	3-65 ^{.6}	121

153	Enhanced angiogenesis of gene-activated dermal equivalent for treatment of full thickness incisional wounds in a porcine model. <i>Biomaterials</i> , 2010 , 31, 7308-20	15.6	78
152	Influence of silica particle internalization on adhesion and migration of human dermal fibroblasts. <i>Biomaterials</i> , 2010 , 31, 8465-74	15.6	95
151	Sustained delivery of doxorubicin by porous CaCO3 and chitosan/alginate multilayers-coated CaCO3 microparticles. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2010 , 353, 132-	1 39	154
150	Tat peptide mediated cellular uptake of SiO2 submicron particles. <i>Colloids and Surfaces B: Biointerfaces</i> , 2010 , 75, 432-40	6	29
149	Fabrication of cellular polycaprolactone films for cell culture. <i>Colloids and Surfaces B: Biointerfaces</i> , 2010 , 76, 38-43	6	8
148	Reconstruction of rat calvarial defects with human mesenchymal stem cells and osteoblast-like cells in poly-lactic-co-glycolic acid scaffolds. <i>European Cells and Materials</i> , 2010 , 20, 109-20	4.3	82
147	A composite scaffold of PLGA microspheres/fibrin gel for cartilage tissue engineering: fabrication, physical properties, and cell responsiveness. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2009 , 88, 240-9	3.5	23
146	RGD modified PLGA/gelatin microspheres as microcarriers for chondrocyte delivery. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2009 , 91, 228-38	3.5	59
145	Spontaneous Deposition of FITC-Labeled Dextran into Covalently Assembled (PGMA/PAH)4 Microcapsules. <i>Macromolecular Chemistry and Physics</i> , 2009 , 210, 1387-1393	2.6	9
144	Poly(allylamine)-graft-poly(N-isopropylacrylamide)/Poly(styrene sulfonate) Sodium Salt Multilayers: Buildup, Wettability, and Mechanical Properties. <i>Macromolecular Chemistry and Physics</i> , 2009 , 210, 2022	2- 2 628	5
143	Polyphosphazene Microcapsules Fabricated through Covalent Assembly. <i>Macromolecular Rapid Communications</i> , 2009 , 30, 448-52	4.8	13
142	Polyelectrolyte coated PLGA nanoparticles: templation and release behavior. <i>Macromolecular Bioscience</i> , 2009 , 9, 326-35	5.5	48
141	Gelatin hydrogel prepared by photo-initiated polymerization and loaded with TGF-beta1 for cartilage tissue engineering. <i>Macromolecular Bioscience</i> , 2009 , 9, 1194-201	5.5	78
140	Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering. <i>Acta Biomaterialia</i> , 2009 , 5, 328-37	10.8	148
139	A polylactide/fibrin gel composite scaffold for cartilage tissue engineering: fabrication and an in vitro evaluation. <i>Journal of Materials Science: Materials in Medicine</i> , 2009 , 20, 135-43	4.5	35
138	Solvent-assisted polymer micro-molding. <i>Science Bulletin</i> , 2009 , 54, 2193-2204		9
137	Covalently immobilized gelatin gradients within three-dimensional porous scaffolds. <i>Science Bulletin</i> , 2009 , 54, 3174-3180		20
136	Preparation and properties of ionically cross-linked chitosan nanoparticles. <i>Polymers for Advanced Technologies</i> , 2009 , 20, 613-619	3.2	137

135	Fabrication and properties of injectable Etricalcium phosphate particles/fibrin gel composite scaffolds for bone tissue engineering. <i>Materials Science and Engineering C</i> , 2009 , 29, 836-842	8.3	15
134	Fabrication of fluorescent microparticles by doping water-soluble CdTe nanocrystals into calcium carbonate for monitoring intracellular uptake. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2009 , 336, 115-122	5.1	14
133	Fabrication of complex microcapsules containing poly(allylamine)-g-poly(N-isopropylacrylamide) and their thermal responsivity. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2009 , 349, 55-60	5.1	9
132	Enhanced angiogenesis of porous collagen scaffolds by incorporation of TMC/DNA complexes encoding vascular endothelial growth factor. <i>Acta Biomaterialia</i> , 2009 , 5, 2983-94	10.8	69
131	Fabrication of microcapsule arrays on chemically patterned surfaces via covalent linking. <i>Journal of Zhejiang University: Science A</i> , 2009 , 10, 114-120	2.1	4
130	Colloidal particles for cellular uptake and delivery. <i>Journal of Materials Chemistry</i> , 2009 , 19, 3108		117
129	Influence of salt on assembly and compression of PDADMAC/PSSMA polyelectrolyte multilayers. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 11577-86	3.6	40
128	Octacalcium phosphate microscopic superstructure self-assembly and evolution by dual-mediating combination. <i>CrystEngComm</i> , 2009 , 11, 1585	3.3	10
127	POLYELECTROLYTE MICROCAPSULES FABRICATED VIA in situ COACERVATION THE INFLUENCE OF DOPED POLYELECTROLYTE AMOUNT IN THE TEMPLATES ON THEIR STRUCTURES AND PROPERTIES. Acta Polymerica Sinica, 2009, 009, 437-444		3
126	EFFECT OF CELLULAR UPTAKE OF SiO2 PARTICLES ON ADHESION AND MIGRATION OF HepG2 CELLS. <i>Acta Polymerica Sinica</i> , 2009 , 009, 815-822		5
125	Fabrication of bovine serum albumin microcapsules by desolvation and destroyable cross-linking. Journal of Materials Chemistry, 2008 , 18, 1153		38
124	Stepwise Assembly of the Same Polyelectrolytes Using Host@uest Interaction To Obtain Microcapsules with Multiresponsive Properties. <i>Chemistry of Materials</i> , 2008 , 20, 4194-4199	9.6	90
123	Enhanced angiogenesis in porous collagen-chitosan scaffolds loaded with angiogenin. <i>Tissue Engineering - Part A</i> , 2008 , 14, 1775-85	3.9	54
122	Multilayer microcapsules with tailored structures for bio-related applications. <i>Journal of Materials Chemistry</i> , 2008 , 18, 3799		153
121	Influence of drying time of polyelectrolyte multilayers on the compression-induced pattern formation. <i>Langmuir</i> , 2008 , 24, 13925-33	4	13
120	Fabrication of thermoresponsive polymer gradients for study of cell adhesion and detachment. <i>Langmuir</i> , 2008 , 24, 13632-9	4	116
119	Assembly of polymeric micelles into hollow microcapsules with extraordinary stability against extreme pH conditions. <i>Langmuir</i> , 2008 , 24, 7810-6	4	27
118	Poly(lactic acid) scaffold fabricated by gelatin particle leaching has good biocompatibility for chondrogenesis. <i>Journal of Biomaterials Science, Polymer Edition</i> , 2008 , 19, 207-21	3.5	31

(2007-2008)

117	Progress in fabricating arrays of soft spherical vessels on mesoscale with spatial control. <i>Science Bulletin</i> , 2008 , 53, 3477-3490	10.6	5
116	Manipulating the properties of coacervated polyelectrolyte microcapsules by chemical crosslinking. <i>Colloid and Polymer Science</i> , 2008 , 286, 951-957	2.4	20
115	pH-responsive protein microcapsules fabricated via glutaraldehyde mediated covalent layer-by-layer assembly. <i>Colloid and Polymer Science</i> , 2008 , 286, 1103-1109	2.4	57
114	Poly(ethyleneimine) microcapsules: glutaraldehyde-mediated assembly and the influence of molecular weight on their properties. <i>Polymers for Advanced Technologies</i> , 2008 , 19, 817-823	3.2	48
113	Fabrication and properties of mineralized collagen-chitosan/hydroxyapatite scaffolds. <i>Polymers for Advanced Technologies</i> , 2008 , 19, 1590	3.2	21
112	Biomimetic modification of chitosan with covalently grafted lactose and blended heparin for improvement of in vitro cellular interaction. <i>Polymers for Advanced Technologies</i> , 2008 , 19, 15-23	3.2	29
111	Layered microcapsules for daunorubicin loading and release as well as in vitro and in vivo studies. <i>Polymers for Advanced Technologies</i> , 2008 , 19, 36-46	3.2	36
110	In Situ Coacervated Microcapsules with Filled Polyelectrolytes and Charge-Controlled Permeation for Dye Molecules. <i>Macromolecular Chemistry and Physics</i> , 2008 , 209, 957-966	2.6	5
109	Collagen-coated polylactide microcarriers/chitosan hydrogel composite: injectable scaffold for cartilage regeneration. <i>Journal of Biomedical Materials Research - Part A</i> , 2008 , 85, 628-37	5.4	69
108	Photoinitiating polymerization to prepare biocompatible chitosan hydrogels. <i>Journal of Applied Polymer Science</i> , 2008 , 110, 1059-1067	2.9	28
107	Preparation and properties of an injectable scaffold of poly(lactic-co-glycolic acid) microparticles/chitosan hydrogel. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2008 , 1, 352-9	4.1	35
106	Influence of assembling pH on the stability of poly(L-glutamic acid) and poly(L-lysine) multilayers against urea treatment. <i>Colloids and Surfaces B: Biointerfaces</i> , 2008 , 62, 250-7	6	25
105	Chitosan modified poly(L-lactide) microspheres as cell microcarriers for cartilage tissue engineering. <i>Colloids and Surfaces B: Biointerfaces</i> , 2008 , 66, 218-25	6	105
104	Microscale control over collagen gradient on poly(L-lactide) membrane surface for manipulating chondrocyte distribution. <i>Colloids and Surfaces B: Biointerfaces</i> , 2008 , 67, 210-5	6	36
103	Fabrication and physical and biological properties of fibrin gel derived from human plasma. <i>Biomedical Materials (Bristol)</i> , 2008 , 3, 015001	3.5	73
102	Template Polymerization to Fabricate Hydrogen-Bonded Poly(acrylic acid)/Poly(vinylpyrrolidone) Hollow Microcapsules with a pH-Mediated Swelling Deswelling Property. <i>Chemistry of Materials</i> , 2007 , 19, 4648-4657	9.6	31
101	Stepwise interfacial self-assembly of nanoparticles via specific DNA pairing. <i>Physical Chemistry Chemical Physics</i> , 2007 , 9, 6313-8	3.6	44
100	Chitosan nanoparticles for loading of toothpaste actives and adhesion on tooth analogs. <i>Journal of Applied Polymer Science</i> , 2007 , 106, 4248-4256	2.9	40

99	Layer-by-layer assembly of biomacromolecules on poly(ethylene terephthalate) films and fiber fabrics to promote endothelial cell growth. <i>Journal of Biomedical Materials Research - Part A</i> , 2007 , 81, 692-704	5.4	16
98	Hydrogel-filled polylactide porous scaffolds for cartilage tissue engineering. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2007 , 82, 192-204	3.5	73
97	Incorporation of basic fibroblast growth factor by a layer-by-layer assembly technique to produce bioactive substrates. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2007 , 83, 285-92	3.5	45
96	Rings of Hydrogel Fabricated by a Micro-Transfer Technique. <i>Macromolecular Rapid Communications</i> , 2007 , 28, 567-571	4.8	10
95	N,N,N-Trimethylchitosan chloride as a gene vector: synthesis and application. <i>Macromolecular Bioscience</i> , 2007 , 7, 855-63	5.5	56
94	Selective removal of particle cores to fabricate manganese carbonate hollow spheres and composite microcapsules. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2007 , 295, 233-238	5.1	27
93	Surface modification and property analysis of biomedical polymers used for tissue engineering. <i>Colloids and Surfaces B: Biointerfaces</i> , 2007 , 60, 137-57	6	446
92	Covalently crosslinked chitosan hydrogel: properties of in vitro degradation and chondrocyte encapsulation. <i>Acta Biomaterialia</i> , 2007 , 3, 23-31	10.8	189
91	In vitro and in vivo degradability and cytocompatibility of poly(l-lactic acid) scaffold fabricated by a gelatin particle leaching method. <i>Acta Biomaterialia</i> , 2007 , 3, 531-40	10.8	110
90	Layer-by-layer assembly of chondroitin sulfate and collagen on aminolyzed poly(L-lactic acid) porous scaffolds to enhance their chondrogenesis. <i>Acta Biomaterialia</i> , 2007 , 3, 677-85	10.8	74
89	Hollow chitosan-alginate multilayer microcapsules as drug delivery vehicle: doxorubicin loading and in vitro and in vivo studies. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2007 , 3, 63-74	6	189
88	The influence of polycaprolactone coating on the internalization and cytotoxicity of gold nanoparticles. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2007 , 3, 215-23	6	26
87	Chitosanflyaluronic acid hybrid film as a novel wound dressing: in vitro and in vivo studies. <i>Polymers for Advanced Technologies</i> , 2007 , 18, 869-875	3.2	129
86	In vitro and in vivo biological performance of collagen-chitosan/silicone membrane bilayer dermal equivalent. <i>Journal of Materials Science: Materials in Medicine</i> , 2007 , 18, 2185-91	4.5	37
85	Gelatin/chitosan/hyaluronan ternary complex scaffold containing basic fibroblast growth factor for cartilage tissue engineering. <i>Journal of Materials Science: Materials in Medicine</i> , 2007 , 18, 1961-8	4.5	55
84	The gene transfection efficiency of thermoresponsive N,N,N-trimethyl chitosan chloride-g-poly(N-isopropylacrylamide) copolymer. <i>Biomaterials</i> , 2007 , 28, 4488-500	15.6	102
83	A facile pathway to fabricate microcapsules by in situ polyelectrolyte coacervation on poly(styrene sulfonate)-doped CaCO3 particles. <i>Journal of Materials Chemistry</i> , 2007 , 17, 670-676		33
82	Specially elaborated thermally induced phase separation to fabricate poly(L-lactic acid) scaffolds with ultra large pores and good interconnectivity. <i>Journal of Applied Polymer Science</i> , 2006 , 101, 3336-3	3342	58

(2005-2006)

81	Biologically driven assembly of polyelectrolyte microcapsule patterns to fabricate microreactor arrays. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 1560-3	16.4	34
8o	Covalently crosslinked chitosan hydrogel formed at neutral pH and body temperature. <i>Journal of Biomedical Materials Research - Part A</i> , 2006 , 79, 913-22	5.4	50
79	Compression-inhibited pore formation of polyelectrolyte multilayers containing weak polyanions: a scanning force microscopy study. <i>ChemPhysChem</i> , 2006 , 7, 590-6	3.2	9
78	Single Polyelectrolyte Microcapsules Fabricated By Glutaraldehyde-Mediated Covalent Layer-By-Layer Assembly. <i>Macromolecular Rapid Communications</i> , 2006 , 27, 2078-2083	4.8	83
77	Biologically Driven Assembly of Polyelectrolyte Microcapsule Patterns To Fabricate Microreactor Arrays. <i>Angewandte Chemie</i> , 2006 , 118, 1590-1593	3.6	4
76	Growth and metabolism of human hepatocytes on biomodified collagen poly(lactic-co-glycolic acid) three-dimensional scaffold. <i>ASAIO Journal</i> , 2006 , 52, 321-7	3.6	27
75	Assembly of multilayer microcapsules on CacO3 particles from biocompatible polysaccharides. Journal of Biomaterials Science, Polymer Edition, 2006, 17, 997-1014	3.5	48
74	Stable Weak Polyelectrolyte Microcapsules with pH-Responsive Permeability. <i>Macromolecules</i> , 2006 , 39, 335-340	5.5	111
73	Equilibrium distribution of permeants in polyelectrolyte microcapsules filled with negatively charged polyelectrolyte: the influence of ionic strength and solvent polarity. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 12905-9	3.4	45
72	Chitosan-mediated synthesis of gold nanoparticles on patterned poly(dimethylsiloxane) surfaces. <i>Biomacromolecules</i> , 2006 , 7, 1203-9	6.9	108
71	Crosslinked polysaccharide nanocapsules: preparation and drug release properties. <i>Acta Biomaterialia</i> , 2006 , 2, 9-18	10.8	20
70	Thermosensitive poly(allylamine)-g-poly(N-isopropylacrylamide) copolymers: Salt-tuned phase separation, particle formation and their applicability on curved surface. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2006 , 272, 203-210	5.1	17
69	Polyelectrolyte microcapsules templated on poly(styrene sulfonate)-doped CaCO3 particles for loading and sustained release of daunorubicin and doxorubicin. <i>European Polymer Journal</i> , 2006 , 42, 3341-3351	5.2	65
68	Two-dimensional chemically tunable patterns with cellular structures fabricated via thermal pressing method. <i>Thin Solid Films</i> , 2006 , 500, 180-185	2.2	4
67	Polylactide hollow spheres fabricated by interfacial polymerization in an oil-in-water emulsion system. <i>Colloid and Polymer Science</i> , 2006 , 284, 513-519	2.4	25
66	Loading and release behaviors of compressed polyelectrolyte multilayers for small dye molecules. Journal of Physical Chemistry B, 2005 , 109, 4887-92	3.4	15
65	Bioactive thin film of acidic fibroblast growth factor fabricated by layer-by-layer assembly. <i>Bioconjugate Chemistry</i> , 2005 , 16, 1316-22	6.3	65
64	Manipulating the Properties of Polyelectrolyte Microcapsules by Glutaraldehyde Cross-Linking. <i>Chemistry of Materials</i> , 2005 , 17, 4610-4616	9.6	124

63	Charge-controlled permeability of polyelectrolyte microcapsules. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 13159-65	3.4	116
62	Ibuprofen-loaded nanoparticles prepared by a co-precipitation method and their release properties. <i>International Journal of Pharmaceutics</i> , 2005 , 304, 220-30	6.5	55
61	Collagen-coated polylactide microspheres as chondrocyte microcarriers. <i>Biomaterials</i> , 2005 , 26, 6305-13	315.6	144
60	Surface wettability of compressed polyelectrolyte multilayers. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2005 , 259, 1-5	5.1	12
59	Surface modification of poly(ethylene terephthalate) via hydrolysis and layer-by-layer assembly of chitosan and chondroitin sulfate to construct cytocompatible layer for human endothelial cells. <i>Colloids and Surfaces B: Biointerfaces</i> , 2005 , 46, 117-26	6	111
58	Poly(ethylene glycol) micro-patterns as environmentally sensitive template for selective or non-selective adsorption. <i>Colloids and Surfaces B: Biointerfaces</i> , 2005 , 46, 169-74	6	9
57	Preformed microcapsules for loading and sustained release of ciprofloxacin hydrochloride. <i>Journal of Controlled Release</i> , 2005 , 104, 193-202	11.7	107
56	Microstructure and mechanical properties of poly(L-lactide) scaffolds fabricated by gelatin particle leaching method. <i>Journal of Applied Polymer Science</i> , 2005 , 98, 1373-1379	2.9	82
55	Printing biomacromolecules on a bovine serum albumin precursor layer. <i>Macromolecular Bioscience</i> , 2005 , 5, 767-74	5.5	7
54	Multilayer microcapsules as anti-cancer drug delivery vehicle: deposition, Sustained release, and in vitro bioactivity. <i>Macromolecular Bioscience</i> , 2005 , 5, 1209-19	5.5	101
53	Multilayer Capsules with Cell-like Topology: Fabrication and Spontaneous Loading of Various Substances in Aqueous and Ethanol Solutions. <i>Macromolecular Chemistry and Physics</i> , 2005 , 206, 1784-1	79 6	11
52	Robust Poly(allylamine)-graft-poly(N-isopropylacrylamide) Particles Prepared by Physical Crosslinking with Poly(styrene sulfonate). <i>Macromolecular Rapid Communications</i> , 2005 , 26, 1657-1663	4.8	4
51	Cartilage tissue engineering PLLA scaffold with surface immobilized collagen and basic fibroblast growth factor. <i>Biomaterials</i> , 2005 , 26, 1253-9	15.6	278
50	Thermosensitive poly(allylamine)-g-poly(N-isopropylacrylamide): synthesis, phase separation and particle formation. <i>Polymer</i> , 2005 , 46, 4088-4097	3.9	48
49	Preparation of porous polylactide microspheres by emulsion-solvent evaporation based on solution induced phase separation. <i>Polymers for Advanced Technologies</i> , 2005 , 16, 622-627	3.2	62
48	Collagen/chitosan-silicone membrane bilayer scaffold as a dermal equivalent. <i>Polymers for Advanced Technologies</i> , 2005 , 16, 789-794	3.2	31
47	Stable microcapsules assembled stepwise from weak polyelectrolytes followed by thermal crosslinking. <i>Polymers for Advanced Technologies</i> , 2005 , 16, 827-833	3.2	39
46	Controlling Biostability of Collagen Films for Fibroblast Cytocompatibility. <i>Journal of Bioactive and Compatible Polymers</i> , 2004 , 19, 353-365	2	9

(2003-2004)

45	Promoting the cytocompatibility of polyurethane scaffolds via surface photo-grafting polymerization of acrylamide. <i>Journal of Materials Science: Materials in Medicine</i> , 2004 , 15, 283-9	4.5	20
44	Endothelium regeneration on luminal surface of polyurethane vascular scaffold modified with diamine and covalently grafted with gelatin. <i>Biomaterials</i> , 2004 , 25, 423-30	15.6	172
43	Enhanced biomacromolecule encapsulation by swelling and shrinking procedures. <i>ChemPhysChem</i> , 2004 , 5, 116-20	3.2	63
42	Endothelial cell functions in vitro cultured on poly(L-lactic acid) membranes modified with different methods. <i>Journal of Biomedical Materials Research Part B</i> , 2004 , 69, 436-43		75
41	Biodegradability and cell-mediated contraction of porous collagen scaffolds: the effect of lysine as a novel crosslinking bridge. <i>Journal of Biomedical Materials Research Part B</i> , 2004 , 71, 334-42		40
40	Incorporation of Carbon Nanotubes into Hollow Microcapsules Using a Removable Template Assembly. <i>Macromolecular Rapid Communications</i> , 2004 , 25, 2014-2018	4.8	12
39	Enhanced biological stability of collagen porous scaffolds by using amino acids as novel cross-linking bridges. <i>Biomaterials</i> , 2004 , 25, 2997-3004	15.6	153
38	Co-patterning chitosan and bovine serum albumin on an aldehyde-enriched glass substrate by microcontact printing. <i>Thin Solid Films</i> , 2004 , 460, 286-290	2.2	9
37	A novel process for inking the stamp with biomacromolecule solution used in reactive microcontact printing. <i>Colloids and Surfaces B: Biointerfaces</i> , 2004 , 36, 177-80	6	10
36	Irreversible Compression of Polyelectrolyte Multilayers. <i>Macromolecules</i> , 2004 , 37, 8836-8839	5.5	25
35	Micropatterning Biomacromolecules on Aldehyde-Enriched Polyester Surfaces by a Microtransfer Technique. <i>Chemistry of Materials</i> , 2004 , 16, 1319-1322	9.6	9
34	Physical-co-Chemical Multicomponent Micropatterns on Polymer Surfaces by Thermal Pressing Method. <i>Chemistry of Materials</i> , 2004 , 16, 4859-4863	9.6	3
33	Immobilization of biomacromolecules onto aminolyzed poly(L-lactic acid) toward acceleration of endothelium regeneration. <i>Tissue Engineering</i> , 2004 , 10, 53-61		138
32	Engineering porous polyurethane scaffolds by photografting polymerization of methacrylic acid for improved endothelial cell compatibility. <i>Journal of Biomedical Materials Research - Part A</i> , 2003 , 67, 136	7 ⁵ 7 ⁴ 3	28
31	Paraffin spheres as porogen to fabricate poly(L-lactic acid) scaffolds with improved cytocompatibility for cartilage tissue engineering. <i>Journal of Biomedical Materials Research Part B</i> , 2003 , 67, 610-7		91
30	Surface Immobilization of Bioactive Molecules on Polyurethane for Promotion of Cytocompatibility to Human Endothelial Cells. <i>Macromolecular Bioscience</i> , 2003 , 3, 157-162	5.5	22
29	Swelling and shrinking of polyelectrolyte microcapsules in response to changes in temperature and ionic strength. <i>Chemistry - A European Journal</i> , 2003 , 9, 915-20	4.8	147
28	Chondrocyte behaviors on poly-L-lactic acid (PLLA) membranes containing hydroxyl, amide or carboxyl groups. <i>Biomaterials</i> , 2003 , 24, 3725-30	15.6	106

27	Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. <i>Biomaterials</i> , 2003 , 24, 4833-41	15.6	853
26	Fabrication of porous collagen/chitosan scaffolds with controlling microstructure for dermal equivalent. <i>Polymers for Advanced Technologies</i> , 2003 , 14, 373-379	3.2	37
25	Thermal dehydration treatment and glutaraldehyde cross-linking to increase the biostability of collagen-chitosan porous scaffolds used as dermal equivalent. <i>Journal of Biomaterials Science, Polymer Edition</i> , 2003 , 14, 861-74	3.5	60
24	Layer-by-layer assembly to modify poly(l-lactic acid) surface toward improving its cytocompatibility to human endothelial cells. <i>Biomacromolecules</i> , 2003 , 4, 446-52	6.9	151
23	Photografting of poly(hydroxylethyl acrylate) onto porous polyurethane scaffolds to improve their endothelial cell compatibility. <i>Journal of Biomaterials Science, Polymer Edition</i> , 2003 , 14, 937-50	3.5	22
22	Surface modification of poly-L-lactic acid (PLLA) membrane by grafting acrylamide: an effective way to improve cytocompatibility for chondrocytes. <i>Journal of Biomaterials Science, Polymer Edition</i> , 2003 , 14, 13-25	3.5	33
21	Spontaneous Deposition of Water-Soluble Substances into Microcapsules: Phenomenon, Mechanism, and Application. <i>Angewandte Chemie</i> , 2002 , 114, 3943-3947	3.6	29
20	Spontaneous deposition of water-soluble substances into microcapsules: phenomenon, mechanism, and application. <i>Angewandte Chemie - International Edition</i> , 2002 , 41, 3789-93	16.4	157
19	Melamine Formaldehyde Core Decomposition as the Key Step Controlling Capsule Integrity: Optimizing the Polyelectrolyte Capsule Fabrication. <i>Macromolecular Chemistry and Physics</i> , 2002 , 203, 953	2.6	50
18	Surface modification of poly-L-lactide by photografting of hydrophilic polymers towards improving its hydrophilicity. <i>Journal of Applied Polymer Science</i> , 2002 , 85, 2163-2171	2.9	63
17	Immobilization of natural macromolecules on poly-L-lactic acid membrane surface in order to improve its cytocompatibility. <i>Journal of Biomedical Materials Research Part B</i> , 2002 , 63, 838-47		94
16	Surface engineering of poly(DL-lactic acid) by entrapment of alginate-amino acid derivatives for promotion of chondrogenesis. <i>Biomaterials</i> , 2002 , 23, 3141-8	15.6	75
15	Surface modification of polycaprolactone with poly(methacrylic acid) and gelatin covalent immobilization for promoting its cytocompatibility. <i>Biomaterials</i> , 2002 , 23, 4889-95	15.6	186
14	Protein immobilization on the surface of poly-L-lactic acid films for improvement of cellular interactions. <i>European Polymer Journal</i> , 2002 , 38, 2279-2284	5.2	88
13	Surface modification of polycaprolactone membrane via aminolysis and biomacromolecule immobilization for promoting cytocompatibility of human endothelial cells. <i>Biomacromolecules</i> , 2002 , 3, 1312-9	6.9	395
12	Spontaneous deposition of horseradish peroxidase into polyelectrolyte multilayer capsules to improve its activity and stability. <i>Chemical Communications</i> , 2002 , 1928-9	5.8	66
11	Construction of cell-compatible layer and culture of human umbilical vascular endothelial cells on porous polystyrene membranes. <i>Journal of Applied Polymer Science</i> , 2001 , 81, 3523-3529	2.9	13
10	The Decomposition Process of Melamine Formaldehyde Cores: The Key Step in the Fabrication of Ultrathin Polyelectrolyte Multilayer Capsules. <i>Macromolecular Materials and Engineering</i> , 2001 , 286, 35	5-381	153

LIST OF PUBLICATIONS

9	Surface modification of polyurethane for promotion of cell adhesion and growth 1: surface photo-grafting with N,N-dimethylaminoethyl methacrylate and cytocompatibility of the modified surface. <i>Journal of Materials Science: Materials in Medicine</i> , 2001 , 12, 447-52	4.5	18	
8	Stability and Mechanical Properties of Polyelectrolyte Capsules Obtained by Stepwise Assembly of Poly(styrenesulfonate sodium salt) and Poly(diallyldimethyl ammonium) Chloride onto Melamine Resin Particles. <i>Langmuir</i> , 2001 , 17, 3491-3495	4	180	
7	The Decomposition Process of Melamine Formaldehyde Cores: The Key Step in the Fabrication of Ultrathin Polyelectrolyte Multilayer Capsules 2001 , 286, 355		7	
6	Study on syntheses and properties of 2,2?-mercaptoethylsulfide dimethacrylate transparent homoand copolymer resins having high refractive index. <i>Journal of Applied Polymer Science</i> , 2000 , 75, 1474-14	1 7 9	49	
5	Functionalizing of polyurethane surfaces by photografting with hydrophilic monomers. <i>Journal of Applied Polymer Science</i> , 2000 , 77, 2505-2512	2.9	41	
4	Preparation of functional poly(etherŪrethane) for immobilization of human living cells 1. Surface graft polymerization of poly(etherŪrethane) with 2-(dimethylamino)ethyl methacrylate and quaternization of grafted membrane. <i>European Polymer Journal</i> , 2000 , 36, 2707-2713	5.2	25	
3	Surface photo-grafting of polyurethane with 2-hydroxyethyl acrylate for promotion of human endothelial cell adhesion and growth. <i>Journal of Biomaterials Science, Polymer Edition</i> , 2000 , 11, 523-36	3.5	39	
2	Surface Texture of Poly(styrenesulfonate sodium salt) and Poly(diallyldimethylammonium chloride) Micron-Sized Multilayer Capsules: A Scanning Force and Confocal Microscopy Study. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 7144-7149	3.4	40	
1	Taking chiral polymers toward immune regulation. <i>Journal of Polymer Science</i> ,	2.4		