E J Rosi

List of Publications by Citations

Source: https://exaly.com/author-pdf/4060143/e-j-rosi-publications-by-citations.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

88 4,721 38 67 g-index

88 5,533 5.7 ext. papers ext. citations avg, IF 5.82

L-index

#	Paper	IF	Citations
88	A review of allochthonous organic matter dynamics and metabolism in streams. <i>Journal of the North American Benthological Society</i> , 2010 , 29, 118-146		499
87	Synthetic chemicals as agents of global change. Frontiers in Ecology and the Environment, 2017, 15, 84-9	0 5.5	294
86	Wastewater treatment effluent reduces the abundance and diversity of benthic bacterial communities in urban and suburban rivers. <i>Applied and Environmental Microbiology</i> , 2013 , 79, 1897-905	4.8	209
85	Toxins in transgenic crop byproducts may affect headwater stream ecosystems. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 16204-8	11.5	190
84	Are rivers just big streams? A pulse method to quantify nitrogen demand in a large river. <i>Ecology</i> , 2008 , 89, 2935-45	4.6	152
83	Pharmaceutical Compounds and Ecosystem Function: An Emerging Research Challenge for Aquatic Ecologists. <i>Ecosystems</i> , 2012 , 15, 867-880	3.9	139
82	Pharmaceuticals suppress algal growth and microbial respiration and alter bacterial communities in stream biofilms 2013 , 23, 583-93		129
81	Triclosan exposure increases triclosan resistance and influences taxonomic composition of benthic bacterial communities. <i>Environmental Science & Environmental Science & Envi</i>	10.3	121
80	Invertebrate food webs along a stream resource gradient. <i>Freshwater Biology</i> , 2002 , 47, 129-141	3.1	121
79	A diverse suite of pharmaceuticals contaminates stream and riparian food webs. <i>Nature Communications</i> , 2018 , 9, 4491	17.4	118
78	Ecosystem ecology meets adaptive management: food web response to a controlled flood on the Colorado River, Glen Canyon 2011 , 21, 2016-33		117
77	Food-web dynamics in a large river discontinuum. <i>Ecological Monographs</i> , 2013 , 83, 311-337	9	110
76	Metabolism, Gas Exchange, and Carbon Spiraling in Rivers. <i>Ecosystems</i> , 2016 , 19, 73-86	3.9	105
75	Defining Extreme Events: A Cross-Disciplinary Review. <i>Eartho</i> s Future, 2018 , 6, 441-455	7.9	94
74	Dynamic heterogeneity: a framework to promote ecological integration and hypothesis generation in urban systems. <i>Urban Ecosystems</i> , 2017 , 20, 1-14	2.8	91
73	Turbidity, light, temperature, and hydropeaking control primary productivity in the Colorado River, Grand Canyon. <i>Limnology and Oceanography</i> , 2015 , 60, 512-526	4.8	88
7 2	A review of ecological effects and environmental fate of illicit drugs in aquatic ecosystems. <i>Journal of Hazardous Materials</i> , 2015 , 282, 18-25	12.8	88

(2018-2015)

71	The hippopotamus conveyor belt: vectors of carbon and nutrients from terrestrial grasslands to aquatic systems in sub-Saharan Africa. <i>Freshwater Biology</i> , 2015 , 60, 512-525	3.1	85	
7º	Occurrence of maize detritus and a transgenic insecticidal protein (Cry1Ab) within the stream network of an agricultural landscape. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 17645-50	11.5	82	
69	Annual mass drownings of the Serengeti wildebeest migration influence nutrient cycling and storage in the Mara River. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 7647-7652	11.5	77	
68	Controls on spatial and temporal variation of nutrient uptake in three Michigan headwater streams. <i>Limnology and Oceanography</i> , 2007 , 52, 1964-1977	4.8	75	
67	Solute-specific scaling of inorganic nitrogen and phosphorus uptake in streams. <i>Biogeosciences</i> , 2013 , 10, 7323-7331	4.6	64	
66	Agricultural land use alters the seasonality and magnitude of stream metabolism. <i>Limnology and Oceanography</i> , 2013 , 58, 1513-1529	4.8	62	
65	Rapid decomposition of maize detritus in agricultural headwater streams 2009 , 19, 133-42		62	
64	Responses of stream macroinvertebrates to Bt maize leaf detritus 2010 , 20, 1949-60		60	
63	Quantity, controls and functions of large woody debris in Midwestern USA streams. <i>River Research and Applications</i> , 2007 , 23, 21-33	2.3	55	
62	Modeling priming effects on microbial consumption of dissolved organic carbon in rivers. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2014 , 119, 982-995	3.7	51	
61	Responses in organic matter accumulation and processing to an experimental wood addition in three headwater streams. <i>Freshwater Biology</i> , 2008 , 53, 1642-1657	3.1	50	
60	The Next Decade of Big Data in Ecosystem Science. <i>Ecosystems</i> , 2017 , 20, 274-283	3.9	49	
59	Temporal variation in substratum-specific rates of N uptake and metabolism and their contribution at the stream-reach scale. <i>Journal of the North American Benthological Society</i> , 2009 , 28, 305-318		49	
58	Occurrence and Potential Biological Effects of Amphetamine on Stream Communities. <i>Environmental Science & Environmental Scien</i>	10.3	47	
57	Moving Towards a New Urban Systems Science. <i>Ecosystems</i> , 2017 , 20, 38-43	3.9	46	
56	Temporal variation in organic carbon spiraling in Midwestern agricultural streams. <i>Biogeochemistry</i> , 2012 , 108, 149-169	3.8	45	
55	Response of secondary production by macroinvertebrates to large wood addition in three Michigan streams. <i>Freshwater Biology</i> , 2009 , 54, 1741-1758	3.1	45	
54	Partitioning assimilatory nitrogen uptake in streams: an analysis of stable isotope tracer additions across continents. <i>Ecological Monographs</i> , 2018 , 88, 120-138	9	43	

53	Antidepressants in stream ecosystems: influence of selective serotonin reuptake inhibitors (SSRIs) on algal production and insect emergence. <i>Freshwater Science</i> , 2016 , 35, 845-855	2	41
52	Decadal-Scale Change in a Large-River Ecosystem. <i>BioScience</i> , 2014 , 64, 496-510	5.7	40
51	Antibiotic stewardship should consider environmental fate of antibiotics. <i>Environmental Science & Environmental & Env</i>	10.3	39
50	You are not always what we think you eat: selective assimilation across multiple whole-stream isotopic tracer studies. <i>Ecology</i> , 2014 , 95, 2757-2767	4.6	35
49	The varying role of water column nutrient uptake along river continua in contrasting landscapes. <i>Biogeochemistry</i> , 2015 , 125, 115-131	3.8	34
48	Macroinvertebrate diets reflect tributary inputs and turbidity-driven changes in food availability in the Colorado River downstream of Glen Canyon Dam. <i>Freshwater Science</i> , 2013 , 32, 397-410	2	34
47	Seasonal variation in nutrient limitation of microbial biofilms colonizing organic and inorganic substrata in streams. <i>Hydrobiologia</i> , 2010 , 649, 331-345	2.4	33
46	Urban stream microbial communities show resistance to pharmaceutical exposure. <i>Ecosphere</i> , 2018 , 9, e02041	3.1	32
45	Acid rain mitigation experiment shifts a forested watershed from a net sink to a net source of nitrogen. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 7580-3	11.5	32
44	Recovery and resilience of urban stream metabolism following Superstorm Sandy and other floods. <i>Ecosphere</i> , 2017 , 8, e01776	3.1	31
43	The antihistamine cimetidine alters invertebrate growth and population dynamics in artificial streams. <i>Freshwater Science</i> , 2012 , 31, 379-388	2	31
42	Anticipating Stream Ecosystem Responses to Climate Change: Toward Predictions that Incorporate Effects Via LandWater Linkages. <i>Ecosystems</i> , 2013 , 16, 909-922	3.9	29
41	Retesting a prediction of the River Continuum Concept: autochthonous versus allochthonous resources in the diets of invertebrates. <i>Freshwater Science</i> , 2016 , 35, 534-543	2	29
40	Dissolved organic carbon in streams from artificially drained and intensively farmed watersheds in Indiana, USA. <i>Biogeochemistry</i> , 2009 , 95, 295-307	3.8	28
39	Ecological responses to trout habitat rehabilitation in a northern Michigan stream. <i>Environmental Management</i> , 2006 , 38, 99-107	3.1	27
38	Extreme floods increase CO2 outgassing from a large Amazonian river. <i>Limnology and Oceanography</i> , 2017 , 62, 989-999	4.8	25
37	Invasion and production of New Zealand mud snails in the Colorado River, Glen Canyon. <i>Biological Invasions</i> , 2010 , 12, 3033-3043	2.7	25
36	The influence of a semi-arid sub-catchment on suspended sediments in the Mara River, Kenya. <i>PLoS ONE</i> , 2018 , 13, e0192828	3.7	25

35	Water Flow and Biofilm Cover Influence Environmental DNA Detection in Recirculating Streams. <i>Environmental Science & Environmental DNA Detection in Recirculating Streams.</i>	10.3	24
34	Macroinvertebrate secondary production in 3 forested streams of the upper Midwest, USA. <i>Journal of the North American Benthological Society</i> , 2007 , 26, 472-490		24
33	Organic matter and nutrient inputs from large wildlife influence ecosystem function in the Mara River, Africa. <i>Ecology</i> , 2018 , 99, 2558-2574	4.6	24
32	Comparing streambed light availability and canopy cover in streams with old-growth versus early-mature riparian forests in western Oregon. <i>Aquatic Sciences</i> , 2013 , 75, 547-558	2.5	23
31	A framework for establishing restoration goals for contaminated ecosystems. <i>Integrated Environmental Assessment and Management</i> , 2016 , 12, 264-72	2.5	21
30	Coarse particulate organic matter transport in low-gradient streams of the Upper Peninsula of Michigan. <i>Journal of the North American Benthological Society,</i> 2008 , 27, 760-771		21
29	EFFECTS OF BENTHIC HABITAT RESTORATION ON NUTRIENT UPTAKE AND ECOSYSTEM METABOLISM IN THREE HEADWATER STREAMS. <i>River Research and Applications</i> , 2012 , 28, 1451-1461	2.3	20
28	Ecology. Harvesting data from genetically engineered crops. <i>Science</i> , 2008 , 320, 452-3	33.3	20
27	Mercury and selenium accumulation in the Colorado River food web, Grand Canyon, USA. <i>Environmental Toxicology and Chemistry</i> , 2015 , 34, 2385-94	3.8	19
26	The role of federal agencies in the application of scientific knowledge. <i>Frontiers in Ecology and the Environment</i> , 2010 , 8, 322-328	5.5	19
25	Hippos (): The animal silicon pump. <i>Science Advances</i> , 2019 , 5, eaav0395	14.3	17
24	Scaling Dissolved Nutrient Removal in River Networks: A Comparative Modeling Investigation. <i>Water Resources Research</i> , 2017 , 53, 9623-9641	5.4	17
23	A novel method to assess effects of chemical stressors on natural biofilm structure and function. <i>Freshwater Biology</i> , 2016 , 61, 2129-2140	3.1	17
22	Changes in long-term water quality of Baltimore streams are associated with both gray and green infrastructure. <i>Limnology and Oceanography</i> , 2019 , 64, S60	4.8	13
21	Functional redundancy of stream macroconsumers despite differences in catchment land use. <i>Freshwater Biology</i> , 2008 , 53, 2587-2599	3.1	13
20	Long-term research reveals multiple relationships between the abundance and impacts of a non-native species. <i>Limnology and Oceanography</i> , 2019 , 64, S105	4.8	12
19	Forest Age Influences In-stream Ecosystem Processes in Northeastern US. <i>Ecosystems</i> , 2017 , 20, 1058-10	037.9	12
18	A 2000-year sediment record reveals rapidly changing sedimentation and land use since the 1960s in the Upper Mara-Serengeti Ecosystem. <i>Science of the Total Environment</i> , 2019 , 664, 148-160	10.2	11

17	High Diet Overlap between Native Small-Bodied Fishes and Nonnative Fathead Minnow in the Colorado River, Grand Canyon, Arizona. <i>Transactions of the American Fisheries Society</i> , 2014 , 143, 1072-	10183	11
16	A practical method for measuring integrated solar radiation reaching streambeds using photodegrading dyes. <i>Freshwater Science</i> , 2012 , 31, 1070-1077	2	11
15	Drivers of nitrogen transfer in stream food webs across continents. <i>Ecology</i> , 2017 , 98, 3044-3055	4.6	10
14	Decline in the quality of suspended fine particulate matter as a food resource for chironomids downstream of an urban area. <i>Freshwater Biology</i> , 2004 , 49, 515-525	3.1	10
13	Give and Take: A Watershed Acid Rain Mitigation Experiment Increases Baseflow Nitrogen Retention but Increases Stormflow Nitrogen Export. <i>Environmental Science & Export Scienc</i>	10.3	10
12	Occurrence, leaching, and degradation of Cry1Ab protein from transgenic maize detritus in agricultural streams. <i>Science of the Total Environment</i> , 2017 , 592, 97-105	10.2	9
11	Seeing the light: urban stream restoration affects stream metabolism and nitrate uptake via changes in canopy cover. <i>Ecological Applications</i> , 2019 , 29, e01941	4.9	9
10	Food web controls on mercury fluxes and fate in the Colorado River, Grand Canyon. <i>Science Advances</i> , 2020 , 6, eaaz4880	14.3	9
9	Methods for quantifying aquatic macroinvertebrate diets. Freshwater Science, 2016, 35, 229-236	2	9
8	Influences of the antidepressant fluoxetine on stream ecosystem function and aquatic insect emergence at environmentally realistic concentrations. <i>Journal of Freshwater Ecology</i> , 2019 , 34, 513-53	1 ^{1.4}	8
7	Quality of suspended fine particulate matter in the Little Tennessee River. <i>Hydrobiologia</i> , 2004 , 519, 29-37	2.4	4
6	High resolution measurement of light in terrestrial ecosystems using photodegrading dyes. <i>PLoS ONE</i> , 2013 , 8, e75715	3.7	3
5	Animal legacies lost and found in river ecosystems. <i>Environmental Research Letters</i> , 2021 , 16, 115011	6.2	3
4	Temporal resource partitioning of wildebeest carcasses by scavengers after riverine mass mortality events. <i>Ecosphere</i> , 2021 , 12, e03326	3.1	3
3	Reply to Beachy et al. and Parrott: Study indicates Bt corn may affect caddisflies. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, E11-E11	11.5	2
2	The meta-gut: Hippo inputs lead to community coalescence of animal and environmental microbiomes		1
1	Dynamics of large wood added to Midwestern USA streams. <i>River Research and Applications</i> , 2021 , 37, 843-857	2.3	