
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4060143/publications.pdf Version: 2024-02-01

FIROS

#	Article	IF	CITATIONS
1	A review of allochthonous organic matter dynamics and metabolism in streams. Journal of the North American Benthological Society, 2010, 29, 118-146.	3.1	595
2	Synthetic chemicals as agents of global change. Frontiers in Ecology and the Environment, 2017, 15, 84-90.	4.0	457
3	Wastewater Treatment Effluent Reduces the Abundance and Diversity of Benthic Bacterial Communities in Urban and Suburban Rivers. Applied and Environmental Microbiology, 2013, 79, 1897-1905.	3.1	284
4	Toxins in transgenic crop byproducts may affect headwater stream ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16204-16208.	7.1	220
5	A diverse suite of pharmaceuticals contaminates stream and riparian food webs. Nature Communications, 2018, 9, 4491.	12.8	189
6	ARE RIVERS JUST BIG STREAMS? A PULSE METHOD TO QUANTIFY NITROGEN DEMAND IN A LARGE RIVER. Ecology, 2008, 89, 2935-2945.	3.2	182
7	Pharmaceutical Compounds and Ecosystem Function: An Emerging Research Challenge for Aquatic Ecologists. Ecosystems, 2012, 15, 867-880.	3.4	168
8	Defining Extreme Events: A Crossâ€Disciplinary Review. Earth's Future, 2018, 6, 441-455.	6.3	167
9	Pharmaceuticals suppress algal growth and microbial respiration and alter bacterial communities in stream biofilms. Ecological Applications, 2013, 23, 583-593.	3.8	166
10	Triclosan Exposure Increases Triclosan Resistance and Influences Taxonomic Composition of Benthic Bacterial Communities. Environmental Science & Technology, 2013, 47, 8923-8930.	10.0	155
11	Foodâ€web dynamics in a large river discontinuum. Ecological Monographs, 2013, 83, 311-337.	5.4	150
12	Invertebrate food webs along a stream resource gradient. Freshwater Biology, 2002, 47, 129-141.	2.4	146
13	Ecosystem ecology meets adaptive management: food web response to a controlled flood on the Colorado River, Clen Canyon. , 2011, 21, 2016-2033.		141
14	Dynamic heterogeneity: a framework to promote ecological integration and hypothesis generation in urban systems. Urban Ecosystems, 2017, 20, 1-14.	2.4	140
15	Annual mass drownings of the Serengeti wildebeest migration influence nutrient cycling and storage in the Mara River. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7647-7652.	7.1	136
16	Metabolism, Gas Exchange, and Carbon Spiraling in Rivers. Ecosystems, 2016, 19, 73-86.	3.4	134
17	Turbidity, light, temperature, and hydropeaking control primary productivity in the Colorado River, Grand Canyon. Limnology and Oceanography, 2015, 60, 512-526.	3.1	118
18	The hippopotamus conveyor belt: vectors of carbon and nutrients from terrestrial grasslands to aquatic systems in subâ€saharan Africa. Freshwater Biology, 2015, 60, 512-525.	2.4	111

#	Article	IF	CITATIONS
19	A review of ecological effects and environmental fate of illicit drugs in aquatic ecosystems. Journal of Hazardous Materials, 2015, 282, 18-25.	12.4	111
20	Occurrence of maize detritus and a transgenic insecticidal protein (Cry1Ab) within the stream network of an agricultural landscape. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17645-17650.	7.1	92
21	Controls on spatial and temporal variation of nutrient uptake in three Michigan headwater streams. Limnology and Oceanography, 2007, 52, 1964-1977.	3.1	89
22	Agricultural land use alters the seasonality and magnitude of stream metabolism. Limnology and Oceanography, 2013, 58, 1513-1529.	3.1	74
23	Solute-specific scaling of inorganic nitrogen and phosphorus uptake in streams. Biogeosciences, 2013, 10, 7323-7331.	3.3	72
24	Rapid decomposition of maize detritus in agricultural headwater streams. Ecological Applications, 2009, 19, 133-142.	3.8	71
25	Responses of stream macroinvertebrates to Bt maize leaf detritus. Ecological Applications, 2010, 20, 1949-1960.	3.8	68
26	The Next Decade of Big Data in Ecosystem Science. Ecosystems, 2017, 20, 274-283.	3.4	68
27	Modeling priming effects on microbial consumption of dissolved organic carbon in rivers. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 982-995.	3.0	67
28	Quantity, controls and functions of large woody debris in Midwestern USA streams. River Research and Applications, 2007, 23, 21-33.	1.7	64
29	Occurrence and Potential Biological Effects of Amphetamine on Stream Communities. Environmental Science & Technology, 2016, 50, 9727-9735.	10.0	64
30	Moving Towards a New Urban Systems Science. Ecosystems, 2017, 20, 38-43.	3.4	63
31	Responses in organic matter accumulation and processing to an experimental wood addition in three headwater streams. Freshwater Biology, 2008, 53, 1642-1657.	2.4	61
32	Partitioning assimilatory nitrogen uptake in streams: an analysis of stable isotope tracer additions across continents. Ecological Monographs, 2018, 88, 120-138.	5.4	60
33	Water Flow and Biofilm Cover Influence Environmental DNA Detection in Recirculating Streams. Environmental Science & Technology, 2018, 52, 8530-8537.	10.0	59
34	Temporal variation in substratum-specific rates of N uptake and metabolism and their contribution at the stream-reach scale. Journal of the North American Benthological Society, 2009, 28, 305-318.	3.1	57
35	Temporal variation in organic carbon spiraling in Midwestern agricultural streams. Biogeochemistry, 2012, 108, 149-169.	3.5	53
36	Response of secondary production by macroinvertebrates to large wood addition in three Michigan streams. Freshwater Biology, 2009, 54, 1741-1758.	2.4	52

#	Article	IF	CITATIONS
37	Antibiotic Stewardship Should Consider Environmental Fate of Antibiotics. Environmental Science & Technology, 2015, 49, 5257-5258.	10.0	52
38	Decadal-Scale Change in a Large-River Ecosystem. BioScience, 2014, 64, 496-510.	4.9	49
39	Antidepressants in stream ecosystems: influence of selective serotonin reuptake inhibitors (SSRIs) on algal production and insect emergence. Freshwater Science, 2016, 35, 845-855.	1.8	48
40	Macroinvertebrate diets reflect tributary inputs and turbidity-driven changes in food availability in the Colorado River downstream of Glen Canyon Dam. Freshwater Science, 2013, 32, 397-410.	1.8	46
41	Acid rain mitigation experiment shifts a forested watershed from a net sink to a net source of nitrogen. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7580-7583.	7.1	46
42	Urban stream microbial communities show resistance to pharmaceutical exposure. Ecosphere, 2018, 9, e02041.	2.2	46
43	You are not always what we think you eat: selective assimilation across multiple wholeâ€stream isotopic tracer studies. Ecology, 2014, 95, 2757-2767.	3.2	44
44	Recovery and resilience of urban stream metabolism following Superstorm Sandy and other floods. Ecosphere, 2017, 8, e01776.	2.2	43
45	Organic matter and nutrient inputs from large wildlife influence ecosystem function in the Mara River, Africa. Ecology, 2018, 99, 2558-2574.	3.2	43
46	The varying role of water column nutrient uptake along river continua in contrasting landscapes. Biogeochemistry, 2015, 125, 115-131.	3.5	42
47	Retesting a prediction of the River Continuum Concept: autochthonous versus allochthonous resources in the diets of invertebrates. Freshwater Science, 2016, 35, 534-543.	1.8	41
48	The influence of a semi-arid sub-catchment on suspended sediments in the Mara River, Kenya. PLoS ONE, 2018, 13, e0192828.	2.5	38
49	The antihistamine cimetidine alters invertebrate growth and population dynamics in artificial streams. Freshwater Science, 2012, 31, 379-388.	1.8	37
50	Extreme floods increase CO ₂ outgassing from a large Amazonian river. Limnology and Oceanography, 2017, 62, 989-999.	3.1	37
51	Seasonal variation in nutrient limitation of microbial biofilms colonizing organic and inorganic substrata in streams. Hydrobiologia, 2010, 649, 331-345.	2.0	35
52	Anticipating Stream Ecosystem Responses to Climate Change: Toward Predictions that Incorporate Effects Via Land–Water Linkages. Ecosystems, 2013, 16, 909-922.	3.4	34
53	Invasion and production of New Zealand mud snails in the Colorado River, Glen Canyon. Biological Invasions, 2010, 12, 3033-3043.	2.4	32
54	Dissolved organic carbon in streams from artificially drained and intensively farmed watersheds in Indiana, USA. Biogeochemistry, 2009, 95, 295-307.	3.5	31

#	Article	IF	CITATIONS
55	Macroinvertebrate secondary production in 3 forested streams of the upper Midwest, USA. Journal of the North American Benthological Society, 2007, 26, 472-490.	3.1	30
56	Ecological Responses to Trout Habitat Rehabilitation in a Northern Michigan Stream. Environmental Management, 2006, 38, 99-107.	2.7	29
57	Comparing streambed light availability and canopy cover in streams with old-growth versus early-mature riparian forests in western Oregon. Aquatic Sciences, 2013, 75, 547-558.	1.5	28
58	The role of federal agencies in the application of scientific knowledge. Frontiers in Ecology and the Environment, 2010, 8, 322-328.	4.0	27
59	Hippos (<i>Hippopotamus amphibius</i>): The animal silicon pump. Science Advances, 2019, 5, eaav0395.	10.3	27
60	A framework for establishing restoration goals for contaminated ecosystems. Integrated Environmental Assessment and Management, 2016, 12, 264-272.	2.9	26
61	EFFECTS OF BENTHIC HABITAT RESTORATION ON NUTRIENT UPTAKE AND ECOSYSTEM METABOLISM IN THREE HEADWATER STREAMS. River Research and Applications, 2012, 28, 1451-1461.	1.7	24
62	A novel method to assess effects of chemical stressors on natural biofilm structure and function. Freshwater Biology, 2016, 61, 2129-2140.	2.4	24
63	Coarse particulate organic matter transport in low-gradient streams of the Upper Peninsula of Michigan. Journal of the North American Benthological Society, 2008, 27, 760-771.	3.1	23
64	Changes in longâ€ŧerm water quality of Baltimore streams are associated with both gray and green infrastructure. Limnology and Oceanography, 2019, 64, S60.	3.1	22
65	Mercury and selenium accumulation in the Colorado River food web, Grand Canyon, USA. Environmental Toxicology and Chemistry, 2015, 34, 2385-2394.	4.3	21
66	Scaling Dissolved Nutrient Removal in River Networks: A Comparative Modeling Investigation. Water Resources Research, 2017, 53, 9623-9641.	4.2	21
67	Seeing the light: urban stream restoration affects stream metabolism and nitrate uptake via changes in canopy cover. Ecological Applications, 2019, 29, e01941.	3.8	21
68	Harvesting Data from Genetically Engineered Crops. Science, 2008, 320, 452-453.	12.6	20
69	A 2000-year sediment record reveals rapidly changing sedimentation and land use since the 1960s in the Upper Mara-Serengeti Ecosystem. Science of the Total Environment, 2019, 664, 148-160.	8.0	19
70	Food web controls on mercury fluxes and fate in the Colorado River, Grand Canyon. Science Advances, 2020, 6, eaaz4880.	10.3	19
71	Influences of the antidepressant fluoxetine on stream ecosystem function and aquatic insect emergence at environmentally realistic concentrations. Journal of Freshwater Ecology, 2019, 34, 513-531.	1.2	18
72	Longâ€ŧerm research reveals multiple relationships between the abundance and impacts of a nonâ€native species. Limnology and Oceanography, 2019, 64, S105.	3.1	18

#	Article	IF	CITATIONS
73	High Diet Overlap between Native Smallâ€Bodied Fishes and Nonnative Fathead Minnow in the Colorado River, Grand Canyon, Arizona. Transactions of the American Fisheries Society, 2014, 143, 1072-1083.	1.4	17
74	Functional redundancy of stream macroconsumers despite differences in catchment land use. Freshwater Biology, 2008, 53, 2587-2599.	2.4	16
75	Forest Age Influences In-stream Ecosystem Processes in Northeastern US. Ecosystems, 2017, 20, 1058-1071.	3.4	16
76	Give and Take: A Watershed Acid Rain Mitigation Experiment Increases Baseflow Nitrogen Retention but Increases Stormflow Nitrogen Export. Environmental Science & Technology, 2018, 52, 13155-13165.	10.0	16
77	Methods for quantifying aquatic macroinvertebrate diets. Freshwater Science, 2016, 35, 229-236.	1.8	15
78	Occurrence, leaching, and degradation of Cry1Ab protein from transgenic maize detritus in agricultural streams. Science of the Total Environment, 2017, 592, 97-105.	8.0	14
79	A practical method for measuring integrated solar radiation reaching streambeds using photodegrading dyes. Freshwater Science, 2012, 31, 1070-1077.	1.8	13
80	Drivers of nitrogen transfer in stream food webs across continents. Ecology, 2017, 98, 3044-3055.	3.2	13
81	Decline in the quality of suspended fine particulate matter as a food resource for chironomids downstream of an urban area. Freshwater Biology, 2004, 49, 515-525.	2.4	12
82	Temporal resource partitioning of wildebeest carcasses by scavengers after riverine mass mortality events. Ecosphere, 2021, 12, e03326.	2.2	7
83	Animal legacies lost and found in river ecosystems. Environmental Research Letters, 2021, 16, 115011.	5.2	7
84	Quality of suspended fine particulate matter in the Little Tennessee River. Hydrobiologia, 2004, 519, 29-37.	2.0	5
85	High Resolution Measurement of Light in Terrestrial Ecosystems Using Photodegrading Dyes. PLoS ONE, 2013, 8, e75715.	2.5	5
86	Reply to Beachy <i>et al.</i> and Parrott: Study indicates Bt corn may affect caddisflies. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, .	7.1	4
87	Dynamics of large wood added to Midwestern USA streams. River Research and Applications, 2021, 37, 843-857.	1.7	0