Chih-Chung C C Yang

List of Publications by Citations

Source: https://exaly.com/author-pdf/4060028/chih-chung-c-c-yang-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

258 papers

4,656 citations

38 h-index

55 g-index

303 ext. papers

5,232 ext. citations

avg, IF

5.07 L-index

#	Paper	IF	Citations
258	Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells. <i>Applied Physics Letters</i> , 2000 , 77, 2988-2990	3.4	196
257	Localized surface plasmon-induced emission enhancement of a green light-emitting diode. <i>Nanotechnology</i> , 2008 , 19, 345201	3.4	144
256	Surface plasmon coupling effect in an InGaN G aN single-quantum-well light-emitting diode. <i>Applied Physics Letters</i> , 2007 , 91, 171103	3.4	109
255	Ultrasonic spray pyrolysis for nanoparticles synthesis. <i>Journal of Materials Science</i> , 2004 , 39, 3647-3657	4.3	98
254	Effective indicators for diagnosis of oral cancer using optical coherence tomography. <i>Optics Express</i> , 2008 , 16, 15847-62	3.3	93
253	Strain relaxation and quantum confinement in InGaN/GaN nanoposts. <i>Nanotechnology</i> , 2006 , 17, 1454-1	14,54β	92
252	Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures. Journal of Applied Physics, 2002 , 92, 4441-4448	2.5	91
251	Quasiregular quantum-dot-like structure formation with postgrowth thermal annealing of InGaN/GaN quantum wells. <i>Applied Physics Letters</i> , 2002 , 80, 2571-2573	3.4	72
250	Exciton hopping in InxGa1NN multiple quantum wells. <i>Physical Review B</i> , 2005 , 71,	3.3	71
249	Polarized light propagation through scattering media: time-resolved Monte Carlo simulations and experiments. <i>Journal of Biomedical Optics</i> , 2003 , 8, 608-17	3.5	69
248	Phosphor-free white-light light-emitting diode of weakly carrier-density-dependent spectrum with prestrained growth of InGaN©aN quantum wells. <i>Applied Physics Letters</i> , 2007 , 90, 151122	3.4	64
247	Nonlinear refractive-index and two photon-absorption near half the band gap in AlGaAs. <i>Applied Physics Letters</i> , 1993 , 62, 2465-2467	3.4	64
246	Differentiating oral lesions in different carcinogenesis stages with optical coherence tomography. Journal of Biomedical Optics, 2009 , 14, 044028	3.5	61
245	Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles. <i>Optics Express</i> , 2010 , 18 Suppl 2, A207-20	3.3	58
244	Enhanced and partially polarized output of a light-emitting diode with its InGaN/GaN quantum well coupled with surface plasmons on a metal grating. <i>Applied Physics Letters</i> , 2008 , 93, 231111	3.4	55
243	Emission characteristics of organic light-emitting diodes and organic thin-films with planar and corrugated structures. <i>International Journal of Molecular Sciences</i> , 2010 , 11, 1527-45	6.3	53
242	Enhancing InGaN-based solar cell efficiency through localized surface plasmon interaction by embedding Ag nanoparticles in the absorbing layer. <i>Optics Express</i> , 2010 , 18, 2682-94	3.3	53

(2012-2004)

241	Nanostructures and carrier localization behaviors of green-luminescence InGaN/GaN quantum-well structures of various silicon-doping conditions. <i>Applied Physics Letters</i> , 2004 , 84, 2506-2508	3.4	53
240	Reduction in the efficiency droop effect of a light-emitting diode through surface plasmon coupling. <i>Applied Physics Letters</i> , 2010 , 96, 261104	3.4	52
239	Impact of high-order surface plasmon modes of metal nanoparticles on enhancement of optical emission. <i>Applied Physics Letters</i> , 2009 , 95, 171103	3.4	51
238	Generating fuzzy membership function with self-organizing feature map. <i>Pattern Recognition Letters</i> , 2006 , 27, 356-365	4.7	50
237	Diagnosis of oral precancer with optical coherence tomography. <i>Biomedical Optics Express</i> , 2012 , 3, 163	23,456	49
236	Surface plasmon coupled light-emitting diode with metal protrusions into p-GaN. <i>Applied Physics Letters</i> , 2013 , 102, 041108	3.4	48
235	Coalescence overgrowth of GaN nanocolumns on sapphire with patterned metal organic vapor phase epitaxy. <i>Journal of Applied Physics</i> , 2009 , 105, 023501	2.5	47
234	Prestrained effect on the emission properties of InGaNGaN quantum-well structures. <i>Applied Physics Letters</i> , 2006 , 89, 051913	3.4	47
233	Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode. <i>Optics Express</i> , 2011 , 19 Suppl 4, A914-29	3.3	46
232	Measurement of the hemoglobin oxygen saturation level with spectroscopic spectral-domain optical coherence tomography. <i>Optics Letters</i> , 2008 , 33, 416-8	3	46
231	Reduced injection current induced blueshift in an InGaNtaN quantum-well light-emitting diode of prestrained growth. <i>Applied Physics Letters</i> , 2007 , 91, 051121	3.4	46
230	The Use of Optical Coherence Tomography for Monitoring the Subsurface Morphologies of Archaic Jades. <i>Archaeometry</i> , 2004 , 46, 171-182	1.6	45
229	Improvement of External Extraction Efficiency in GaN-Based LEDs by \$ hbox{SiO}_{2}\$ Nanosphere Lithography. <i>IEEE Electron Device Letters</i> , 2008 , 29, 658-660	4.4	44
228	Temperature-dependent exciton dynamics in a ZnO thin film. <i>Applied Physics Letters</i> , 2005 , 87, 252117	3.4	43
227	Enhanced efficiency and reduced spectral shift of green light-emitting-diode epitaxial structure with prestrained growth. <i>Journal of Applied Physics</i> , 2008 , 104, 123106	2.5	41
226	Delineation of an oral cancer lesion with swept-source optical coherence tomography. <i>Journal of Biomedical Optics</i> , 2008 , 13, 044012	3.5	40
225	Formation of various metal nanostructures with thermal annealing to control the effective coupling energy between a surface plasmon and an InGaN/GaN quantum well. <i>Nanotechnology</i> , 2007 , 18, 265402	3.4	40
224	Geometry and composition comparisons between c-plane disc-like and m-plane core-shell InGaN/GaN quantum wells in a nitride nanorod. <i>Optics Express</i> , 2012 , 20, 15859-71	3.3	39

223	Multiple-component photoluminescence decay caused by carrier transport in InGaN/GaN multiple quantum wells with indium aggregation structures. <i>Applied Physics Letters</i> , 2002 , 80, 4375-4377	3.4	39
222	Threading dislocation evolution in patterned GaN nanocolumn growth and coalescence overgrowth. <i>Journal of Applied Physics</i> , 2009 , 106, 023521	2.5	38
221	Landmine detection and classification with complex-valued hybrid neural network using scattering parameters dataset. <i>IEEE Transactions on Neural Networks</i> , 2005 , 16, 743-53		38
220	Efficiency improvement of a vertical light-emitting diode through surface plasmon coupling and grating scattering. <i>Optics Express</i> , 2014 , 22 Suppl 3, A842-56	3.3	37
219	Residual thermal strain in thick GaN epifilms revealed by cross-sectional Raman scattering and cathodoluminescence spectra. <i>Semiconductor Science and Technology</i> , 2007 , 22, 896-899	1.8	37
218	Temperature dependence of the surface plasmon coupling with an InGaN G aN quantum well. <i>Applied Physics Letters</i> , 2007 , 90, 193103	3.4	37
217	Phosphor-Free Monolithic White-Light LED. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2009 , 15, 1210-1217	3.8	35
216	Influence of the quantum-confined Stark effect in an InGaNtaN quantum well on its coupling with surface plasmon for light emission enhancement. <i>Applied Physics Letters</i> , 2007 , 90, 183114	3.4	35
215	Cluster size and composition variations in yellow and red light-emitting InGaN thin films upon thermal annealing. <i>Journal of Applied Physics</i> , 2004 , 95, 5388-5396	2.5	35
214	Further reduction of efficiency droop effect by adding a lower-index dielectric interlayer in a surface plasmon coupled blue light-emitting diode with surface metal nanoparticles. <i>Applied Physics Letters</i> , 2014 , 105, 101106	3.4	34
213	Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure. <i>Applied Physics Letters</i> , 2006 , 89, 203113	3.4	34
212	Cross-sectional sizes and emission wavelengths of regularly patterned GaN and core-shell InGaN/GaN quantum-well nanorod arrays. <i>Journal of Applied Physics</i> , 2013 , 113, 054315	2.5	33
211	Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring. <i>Nanotechnology</i> , 2016 , 27, 115102	3.4	32
210	Fabrication of sphere-like Au nanoparticles on substrate with laser irradiation and their polarized localized surface plasmon behaviors. <i>Optics Express</i> , 2009 , 17, 14186-98	3.3	32
209	Quantum-well-width dependencies of postgrowth thermal annealing effects of InGaN/GaN quantum wells. <i>Journal of Applied Physics</i> , 2003 , 93, 9693-9696	2.5	32
208	Diagnosis of oral submucous fibrosis with optical coherence tomography. <i>Journal of Biomedical Optics</i> , 2009 , 14, 054008	3.5	31
207	Excitation power dynamics of photoluminescence in InGaNIGaN quantum wells with enhanced carrier localization. <i>Journal of Applied Physics</i> , 2005 , 97, 013525	2.5	31
206	Light-emitting device with regularly patterned growth of an InGaN/GaN quantum-well nanorod light-emitting diode array. <i>Optics Letters</i> , 2013 , 38, 3370-3	3	30

(2017-2009)

205	improving emission enhancement in surface plasmon coupling with an InGaN/GaN quantum well by inserting a dielectric layer of low refractive index between metal and semiconductor. <i>Applied Physics Letters</i> , 2009 , 94, 233113	3.4	30	
204	Modulation behaviors of surface plasmon coupled light-emitting diode. <i>Optics Express</i> , 2015 , 23, 8150-6	53.3	28	
203	Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography. <i>Nanotechnology</i> , 2010 , 21, 295102	3.4	28	
202	Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaNLaN dual-quantum-well structure. <i>Applied Physics Letters</i> , 2008 , 92, 013108	3.4	28	
201	White-light light-emitting device based on surface plasmon-enhanced CdSeInS nanocrystal wavelength conversion on a blue/green two-color light-emitting diode. <i>Applied Physics Letters</i> , 2008 , 92, 091112	3.4	28	
200	Surface plasmon coupling with a radiating dipole near a Ag nanoparticle embedded in GaN. <i>Applied Physics Letters</i> , 2013 , 102, 161103	3.4	27	
199	Surface plasmon effects in the absorption enhancements of amorphous silicon solar cells with periodical metal nanowall and nanopillar structures. <i>Optics Express</i> , 2012 , 20, A104-18	3.3	27	
198	Bio-Plasmonics: Nano/micro Structure of Surface Plasmon Resonance Devices for Biomedicine. <i>Optical and Quantum Electronics</i> , 2005 , 37, 1423-1437	2.4	27	
197	Effects of the intermediate SiO2 layer on polarized output of a light-emitting diode with surface plasmon coupling. <i>Journal of Applied Physics</i> , 2010 , 108, 113101	2.5	26	
196	Regularly patterned non-polar InGaN/GaN quantum-well nanorod light-emitting diode array. <i>Optics Express</i> , 2014 , 22 Suppl 7, A1799-809	3.3	25	
195	Enhancements of the emission and light extraction of a radiating dipole coupled with localized surface plasmon induced on a surface metal nanoparticle in a light-emitting device. <i>Optics Express</i> , 2014 , 22 Suppl 1, A155-66	3.3	25	
194	Crystallinity Improvement of ZnO Thin Film on Different Buffer Layers Grown by MBE. <i>Journal of Nanomaterials</i> , 2012 , 2012, 1-7	3.2	25	
193	Orange R ed Light-Emitting Diodes Based on a Prestrained InGaNtan Quantum-Well Epitaxy Structure. <i>IEEE Photonics Technology Letters</i> , 2006 , 18, 2269-2271	2.2	25	
192	Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emitter. <i>Applied Physics Letters</i> , 2008 , 92, 133115	3.4	24	
191	Chronic leg ulcers in Werner's syndrome. <i>Journal of Plastic, Reconstructive and Aesthetic Surgery</i> , 2004 , 57, 86-8		24	
190	Characterizing the localized surface plasmon resonance behaviors of Au nanorings and tracking their diffusion in bio-tissue with optical coherence tomography. <i>Biomedical Optics Express</i> , 2010 , 1, 1060	o ³ 1\delta73	23	
189	Thermal annealing effects on an InGaN film with an average indium mole fraction of 0.31. <i>Applied Physics Letters</i> , 2003 , 83, 3906-3908	3.4	23	
188	Dependencies of surface plasmon coupling effects on the p-GaN thickness of a thin-p-type light-emitting diode. <i>Optics Express</i> , 2017 , 25, 21526-21536	3.3	22	

187	Fabrication of surface metal nanoparticles and their induced surface plasmon coupling with subsurface InGaN/GaN quantum wells. <i>Nanotechnology</i> , 2011 , 22, 475201	3.4	22
186	Growth of Highly Conductive Ga-Doped ZnO Nanoneedles. <i>ACS Applied Materials & Doped State State</i>	9.5	21
185	Surface-plasmon-coupled emission enhancement of a quantum well with a metal nanoparticle embedded in a light-emitting diode. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2013 , 30, 2599	1.7	21
184	A GaN photonic crystal membrane laser. <i>Nanotechnology</i> , 2011 , 22, 025201	3.4	21
183	High-phase-purity zinc-blende InN on r-plane sapphire substrate with controlled nitridation pretreatment. <i>Applied Physics Letters</i> , 2008 , 92, 111914	3.4	21
182	Electromagnetic modeling of organic light-emitting devices. <i>Journal of Lightwave Technology</i> , 2006 , 24, 2450-2457	4	21
181	Visfatin regulates genes related to lipid metabolism in porcine adipocytes. <i>Journal of Animal Science</i> , 2010 , 88, 3233-41	0.7	20
180	Nitride Nanocolumns for the Development of Light-Emitting Diode. <i>IEEE Transactions on Electron Devices</i> , 2010 , 57, 71-78	2.9	20
179	Carrier relaxation in InGaNtan quantum wells with nanometer-scale cluster structures. <i>Applied Physics Letters</i> , 2004 , 85, 1371-1373	3.4	20
178	Numerical study on surface plasmon polariton behaviors in periodic metal-dielectric structures using a plane-wave-assisted boundary integral-equation method. <i>Optics Express</i> , 2007 , 15, 9048-62	3.3	19
177	Improved a-plane GaN quality grown with flow modulation epitaxy and epitaxial lateral overgrowth on r-plane sapphire substrate. <i>Applied Physics Letters</i> , 2008 , 92, 231902	3.4	18
176	Dependencies of the emission behavior and quantum well structure of a regularly-patterned, InGaN/GaN quantum-well nanorod array on growth condition. <i>Optics Express</i> , 2014 , 22, 17303-19	3.3	17
175	Myocardial tissue characterization based on a polarization-sensitive optical coherence tomography system with an ultrashort pulsed laser. <i>Journal of Biomedical Optics</i> , 2006 , 11, 054016	3.5	17
174	Comparison of nanostructure characteristics of ZnO grown on GaN and sapphire. <i>Journal of Applied Physics</i> , 2006 , 99, 054301	2.5	17
173	Multi-section core-shell InGaN/GaN quantum-well nanorod light-emitting diode array. <i>Optics Express</i> , 2015 , 23, 21919-30	3.3	16
172	Vertical light-emitting diodes with surface gratings and rough surfaces for effective light extraction. <i>Optics Express</i> , 2013 , 21, 17686-94	3.3	16
171	X-ray diffraction study on an InGaN©aN quantum-well structure of prestrained growth. <i>Journal of Applied Physics</i> , 2007 , 101, 113503	2.5	16
170	Surface plasmon leakage in its coupling with an InGaN G aN quantum well through an Ohmic contact. <i>Applied Physics Letters</i> , 2007 , 91, 063121	3.4	16

(2012-2007)

169	Emission enhancement behaviors in the coupling between surface plasmon polariton on a one-dimensional metallic grating and a light emitter. <i>Applied Physics Letters</i> , 2007 , 91, 233104	3.4	16	
168	Resolution improvement with dispersion manipulation and a retrieval algorithm in optical coherence tomography. <i>Applied Optics</i> , 2003 , 42, 227-34	1.7	16	
167	Effects of overgrown p-layer on the emission characteristics of the InGaN/GaN quantum wells in a high-indium light-emitting diode. <i>Optics Express</i> , 2012 , 20, 11321-35	3.3	15	
166	Dependence of spectral behavior in an InGaN/GaN quantum-well light-emitting diode on the prestrained barrier thickness. <i>Journal of Applied Physics</i> , 2008 , 104, 043108	2.5	15	
165	Epitaxial overgrowth of GaN nanocolumns. <i>Journal of Vacuum Science & Technology B</i> , 2007 , 25, 964		15	
164	Improvements of InGaNGaN quantum-well interfaces and radiative efficiency with InN interfacial layers. <i>Applied Physics Letters</i> , 2004 , 84, 5422-5424	3.4	15	
163	Strong green luminescence in quaternary InAlGaN thin films. <i>Applied Physics Letters</i> , 2003 , 82, 1377-13	5 79 5.4	15	
162	Analysis of phase-matching conditions in flexural-wave modulated fiber Bragg grating. <i>Journal of Lightwave Technology</i> , 2002 , 20, 311-315	4	15	
161	Light Extraction Enhancement of a GaN-Based Light-Emitting Diode Through Grating-Patterned Photoelectrochemical Surface Etching With Phase Mask Interferometry. <i>IEEE Photonics Technology Letters</i> , 2010 , 22, 640-642	2.2	14	
160	High Modulation Bandwidth of a Light-Emitting Diode With Surface Plasmon Coupling. <i>IEEE Transactions on Electron Devices</i> , 2016 , 63, 3989-3995	2.9	14	
159	Direct observation of conduction band plasmons and the related Burstein-Moss shift in highly doped semiconductors: A STEM-EELS study of Ga-doped ZnO. <i>Physical Review B</i> , 2018 , 98,	3.3	14	
158	Efficiency enhancement of light color conversion through surface plasmon coupling. <i>Optics Express</i> , 2018 , 26, 23629-23640	3.3	14	
157	Cancer cell uptake behavior of Au nanoring and its localized surface plasmon resonance induced cell inactivation. <i>Nanotechnology</i> , 2015 , 26, 075102	3.4	13	
156	Photothermal optical coherence tomography based on the localized surface plasmon resonance of Au nanoring. <i>Optics Express</i> , 2014 , 22, 11754-69	3.3	13	
155	On-substrate fabrication of a bio-conjugated Au nanoring solution for photothermal therapy application. <i>Nanotechnology</i> , 2013 , 24, 065102	3.4	13	
154	Mechanisms for photon-emission enhancement with silicon doping in InGaN/GaN quantum-well structures. <i>Journal of Electronic Materials</i> , 2003 , 32, 375-381	1.9	13	
153	Stimulated emission study of InGaN/GaN multiple quantum well structures. <i>Applied Physics Letters</i> , 2000 , 76, 318-320	3.4	13	
152	Photoelectrochemical Liftoff of Patterned Sapphire Substrate for Fabricating Vertical Light-Emitting Diode. <i>IEEE Photonics Technology Letters</i> , 2012 , 24, 1775-1777	2.2	12	

151	Microvascular Imaging Using Swept-Source Optical Coherence Tomography with Single-Channel Acquisition. <i>Applied Physics Express</i> , 2011 , 4, 097001	2.4	12
150	Numerical Study on Quantum Efficiency Enhancement of a Light-Emitting Diode Based on Surface Plasmon Coupling With a Quantum Well. <i>IEEE Photonics Technology Letters</i> , 2008 , 20, 1339-1341	2.2	12
149	Carrier trapping effects on photoluminescence decay time in InGaNGaN quantum wells with nanocluster structures. <i>Journal of Applied Physics</i> , 2007 , 101, 063511	2.5	12
148	Enhanced photoluminescence excitation in surface plasmon coupling with an InGaNGaN quantum well. <i>Applied Physics Letters</i> , 2007 , 91, 183107	3.4	12
147	Carrier capture times of the localized states in an InGaN thin film with indium-rich nanocluster structures. <i>Applied Physics Letters</i> , 2006 , 89, 011906	3.4	12
146	Determination of cation exchange capacity by one-step soil leaching column method. <i>Communications in Soil Science and Plant Analysis</i> , 2001 , 32, 2359-2372	1.5	12
145	Surface plasmon coupling for suppressing p-GaN absorption and TM-polarized emission in a deep-UV light-emitting diode. <i>Optics Letters</i> , 2015 , 40, 4229-32	3	11
144	Evaluating the blue-shift behaviors of the surface plasmon coupling of an embedded light emitter with a surface Ag nanoparticle by adding a dielectric interlayer or coating. <i>Optics Express</i> , 2015 , 23, 307	03-20	11
143	Thermal Annealing Effects on the Performance of a Ga-Doped ZnO Transparent-Conductor Layer in a Light-Emitting Diode. <i>IEEE Transactions on Electron Devices</i> , 2015 , 62, 3742-3749	2.9	11
142	Direct writing of silicon gratings with highly coherent ultraviolet laser. <i>Applied Physics Letters</i> , 1997 , 71, 2442-2444	3.4	11
141	Mesa-size-dependent color contrast in flip-chip blue/green two-color InGaNtaN multi-quantum-well micro-light-emitting diodes. <i>Applied Physics Letters</i> , 2006 , 89, 093501	3.4	11
140	Coalescence overgrowth of GaN nano-columns with metalorganic chemical vapor deposition. <i>Nanotechnology</i> , 2007 , 18, 445601	3.4	11
139	Polarization gating in ultrafast-optics imaging of skeletal muscle tissues. <i>Optics Letters</i> , 2001 , 26, 432-4	3	11
138	Processing and microstructure of Nano-Mo/Al2O3 composites from MOCVD and fluidized bed. <i>Scripta Materialia</i> , 1999 , 11, 1361-1377		11
137	Effects of dispersive two-photon transitions on femtosecond pulse propagation in semiconductor waveguides. <i>Applied Physics Letters</i> , 1993 , 63, 1304-1306	3.4	11
136	Significant mobility enhancement in extremely thin highly doped ZnO films. <i>Applied Physics Letters</i> , 2015 , 106, 152102	3.4	10
135	Regularly patterned multi-section GaN nanorod arrays grown with a pulsed growth technique. <i>Nanotechnology</i> , 2016 , 27, 025303	3.4	10
134	Method for enhancing the favored transverse-electric-polarized emission of an AlGaN deep-ultraviolet quantum well. <i>Optics Express</i> , 2017 , 25, 26365-26377	3.3	10

(2007-2014)

133	Temperature dependent double blueshift of photoluminescence peak position in MgZnO epitaxial layers. <i>Journal of Applied Physics</i> , 2014 , 116, 123501	2.5	10
132	Noninvasive imaging of heart chamber in Drosophila with dual-beam optical coherence tomography. <i>Journal of Biophotonics</i> , 2013 , 6, 708-17	3.1	10
131	Sapphire Substrate Liftoff With Photoelectrochemical Etching for Vertical Light-Emitting Diode Fabrication. <i>IEEE Photonics Technology Letters</i> , 2011 , 23, 654-656	2.2	10
130	Further emission efficiency improvement of a commercial-quality light-emitting diode through surface plasmon coupling. <i>Optics Letters</i> , 2018 , 43, 5631-5634	3	10
129	Anti-reflection behavior of a surface Ga-doped ZnO nanoneedle structure and the controlling factors. <i>Optical Materials Express</i> , 2017 , 7, 4058	2.6	9
128	Multi-mechanism efficiency enhancement in growing Ga-doped ZnO as the transparent conductor on a light-emitting diode. <i>Optics Express</i> , 2015 , 23, 32274-88	3.3	9
127	Geometry for Maximizing Localized Surface Plasmon Resonance of Au Nanorings with Random Orientations. <i>Plasmonics</i> , 2011 , 6, 547-555	2.4	9
126	Bond lengths and lattice structure of InP0.52Sb0.48 grown on GaAs. <i>Applied Physics Letters</i> , 2012 , 101, 091902	3.4	9
125	Myocardial tissue characterization based on the time-resolved Stokes-Mueller formalism. <i>Optics Express</i> , 2002 , 10, 1347-53	3.3	9
124	Color conversion efficiency enhancement of colloidal quantum dot through its linkage with synthesized metal nanoparticle on a blue light-emitting diode. <i>Optics Letters</i> , 2019 , 44, 5691-5694	3	9
123	Combining High Hole Concentration in p-GaN and High Mobility in u-GaN for High p-Type Conductivity in a p-GaN/u-GaN Alternating-Layer Nanostructure. <i>IEEE Transactions on Electron Devices</i> , 2017 , 64, 115-120	2.9	8
122	Behaviors of Surface Plasmon Coupled Light-Emitting Diodes Induced by Surface Ag Nanoparticles on Dielectric Interlayers. <i>Plasmonics</i> , 2015 , 10, 1029-1040	2.4	8
121	Surface plasmon coupled light-emitting diode: Experimental and numerical studies. <i>Japanese Journal of Applied Physics</i> , 2015 , 54, 02BD01	1.4	8
120	Independent variations of applied voltage and injection current for controlling the quantum-confined Stark effect in an InGaN/GaN quantum-well light-emitting diode. <i>Optics Express</i> , 2014 , 22, 8367-75	3.3	8
119	MBE-Grown CdZnO/ZnO Multiple Quantum-Well Light-Emitting Diode on MOCVD-Grown p-Type GaN. <i>IEEE Photonics Technology Letters</i> , 2012 , 24, 909-911	2.2	8
118	Method for suppressing the mirror image in Fourier-domain optical coherence tomography. <i>Optics Letters</i> , 2011 , 36, 2889-91	3	8
117	Observations of cardiac beating behaviors of wild-type and mutant Drosophilae with optical coherence tomography. <i>Journal of Biophotonics</i> , 2011 , 4, 610-8	3.1	8
116	Uncertainty of Positioning and Displacement Measurements in Quantum and Thermal Regimes. <i>IEEE Transactions on Instrumentation and Measurement</i> , 2007 , 56, 1658-1665	5.2	8

115	Non-degenerate fs pump-probe study on InGaN with multi-wavelength second-harmonic generation. <i>Optics Express</i> , 2005 , 13, 5245-52	3.3	8
114	Ultrafast biexciton dynamics in a ZnO thin film. <i>Applied Physics Letters</i> , 2005 , 87, 072103	3.4	8
113	Ultrafast carrier dynamics in an InGaN thin film. Journal of Applied Physics, 2005, 97, 033704	2.5	8
112	Two-Component Photoluminescence Decay in InGaN/GaN Multiple Quantum Well Structures. <i>Physica Status Solidi (B): Basic Research</i> , 2001 , 228, 121-124	1.3	8
111	Simulation study on light color conversion enhancement through surface plasmon coupling. <i>Optics Express</i> , 2019 , 27, A629-A642	3.3	8
110	Enhancement of Emission Efficiency of Deep-Ultraviolet AlGaN Quantum Wells Through Surface Plasmon Coupling with an Al Nanograting Structure. <i>Plasmonics</i> , 2018 , 13, 863-872	2.4	7
109	Different surface plasmon coupling behaviors of a surface Al nanoparticle between TE and TM polarizations in a deep-UV light-emitting diode. <i>Optics Express</i> , 2018 , 26, 8340-8355	3.3	7
108	Coupling of a light-emitting diode with surface plasmon polariton or localized surface plasmon induced on surface silver gratings of different geometries. <i>Optics Express</i> , 2018 , 26, 9205-9219	3.3	7
107	Computation time-saving mirror image suppression method in Fourier-domain optical coherence tomography. <i>Optics Express</i> , 2012 , 20, 8270-83	3.3	7
106	Junction Temperature-Controlled Spectrum in a Two-Color InGaNtaN Quantum-Well Light-Emitting Diode. <i>IEEE Photonics Technology Letters</i> , 2006 , 18, 2671-2673	2.2	7
105	Sensitized TiO2 nanocomposites through HMME linkage for photodynamic effects. <i>Journal of Biomedical Optics</i> , 2016 , 21, 128001	3.5	7
104	Coupling Behaviors of Surface Plasmon Polariton and Localized Surface Plasmon with an InGaN/GaN Quantum Well. <i>Plasmonics</i> , 2016 , 11, 931-939	2.4	7
103	Enhancing the Hole-Injection Efficiency of a Light-Emitting Diode by Increasing Mg Doping in the p-AlGaN Electron-Blocking Layer. <i>IEEE Transactions on Electron Devices</i> , 2017 , 64, 3226-3233	2.9	6
102	Phosphor-free, white-light LED under alternating-current operation. <i>Optics Letters</i> , 2014 , 39, 6371-4	3	6
101	Characterizations of GaN-Based LEDs Encompassed With Self-Aligned Nanorod Arrays of Various Distribution Densities. <i>IEEE Electron Device Letters</i> , 2009 , 30, 1060-1062	4.4	6
100	Polarity Control in Growing Highly Ga-Doped ZnO Nanowires with the Vapor-Liquid-Solid Process. <i>ACS Applied Materials & Documents and State Stat</i>	9.5	6
99	Growth Model of a GaN Nanorod with the Pulsed-Growth Technique of Metalorganic Chemical Vapor Deposition. <i>Crystal Growth and Design</i> , 2018 , 18, 3767-3773	3.5	6
98	Coupling Behaviors of a Radiating Dipole with the Surface Plasmon Induced on a Metal Protrusion. <i>Plasmonics</i> , 2015 , 10, 241-249	2.4	5

(2013-2018)

97	Exocytosis of gold nanoparticle and photosensitizer from cancer cells and their effects on photodynamic and photothermal processes. <i>Nanotechnology</i> , 2018 , 29, 235101	3.4	5	
96	InGaN/GaN MQW Photoluminescence Enhancement by Localized Surface Plasmon Resonance on Isolated Ag Nanoparticles. <i>Plasmonics</i> , 2014 , 9, 1183-1187	2.4	5	
95	Ultrafast Exciton Dynamics in a ZnO Thin Film. Japanese Journal of Applied Physics, 2009, 48, 022402	1.4	5	
94	Characteristics of light emitter coupling with surface plasmons in air/metal/dielectric grating structures. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2009 , 26, 923	1.7	5	
93	Tissue birefringence of hypercholesterolemic rat liver measured with polarization-sensitive optical coherence tomography. <i>Journal of Biomedical Optics</i> , 2007 , 12, 064022	3.5	5	
92	Effects of interfacial layers in InGaNtaN quantum-well structures on their optical and nanostructural properties. <i>Journal of Applied Physics</i> , 2005 , 98, 014317	2.5	5	
91	Comparisons of the transmitted signals of time, aperture, and angle gating in biological tissues and a phantom. <i>Optics Express</i> , 2004 , 12, 1157	3.3	5	
90	Temperature-insensitive linear strain measurement using two fiber Bragg gratings in a power detection scheme. <i>Optics Communications</i> , 2001 , 197, 327-330	2	5	
89	Two-photon transitions between bound-to-continuum states in AlGaAs/GaAs multiple quantum well. <i>Applied Physics Letters</i> , 1998 , 73, 3638-3640	3.4	5	
88	Direct measurement of defect and dopant abruptness at high electron mobility ZnO homojunctions. <i>Applied Physics Letters</i> , 2016 , 109, 143506	3.4	5	
87	Structure variation of a sidewall quantum well on a GaN nanorod. <i>Nanotechnology</i> , 2017 , 28, 045203	3.4	4	
86	Spatial range of the plasmonic Dicke effect in an InGaN/GaN multiple quantum well structure. <i>Nanotechnology</i> , 2020 , 31, 295001	3.4	4	
85	Spatially resolved study of InGaN photoluminescence enhancement by single Ag nanoparticles. <i>Journal Physics D: Applied Physics</i> , 2013 , 46, 145105	3	4	
84	Comparison of emission characteristics between the CdZnO/ZnO quantum wells on ZnO and GaN templates. <i>Optics Express</i> , 2012 , 20, 21860-74	3.3	4	
83	Differential gene expression between the porcine morula and blastocyst. <i>Reproduction in Domestic Animals</i> , 2012 , 47, 69-81	1.6	4	
82	Vertical CdZnO/ZnO Quantum-Well Light-Emitting Diode. <i>IEEE Photonics Technology Letters</i> , 2013 , 25, 317-319	2.2	4	
81	Strain reduction and crystal improvement of an InGaN/GaN quantum-well light-emitting diode on patterned Si (110) substrate. <i>Applied Physics Letters</i> , 2013 , 103, 141914	3.4	4	
80	Differentiation of oral precancerous stages with optical coherence tomography based on the evaluation of optical scattering properties of oral mucosae. <i>Laser Physics</i> , 2013 , 23, 045602	1.2	4	

79	Motion-insensitive optical coherence tomography based micro-angiography. <i>Optics Express</i> , 2011 , 19, 26117-31	3.3	4
78	Emission Efficiency Dependence on the p-GaN Thickness in a High-Indium InGaN/GaN Quantum-Well Light-Emitting Diode. <i>IEEE Photonics Technology Letters</i> , 2011 , 23, 1757-1759	2.2	4
77	Photoluminescence studies of MBE-grown ZnO and MgZnO epitaxial layers. <i>Physica Status Solidi C:</i> Current Topics in Solid State Physics, 2009 , 6, 2668-2670		4
76	Study on the decay mechanisms of surface plasmon coupling features with a light emitter through time-resolved simulations. <i>Optics Express</i> , 2009 , 17, 104-16	3.3	4
75	Dispersion Compensation in Optical Coherence Tomography with a Prism in a Rapid-Scanning Optical Delay Line. <i>Optical and Quantum Electronics</i> , 2005 , 37, 1199-1212	2.4	4
74	Photoluminescence temperature behavior and Monte Carlo simulation of exciton hopping in InGaN multiple quantum wells. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2005 , 2, 2809-2812		4
73	Effects of propagation on the operation of a synthetic aperture sonar. <i>Journal of the Acoustical Society of America</i> , 1987 , 82, 1403-1408	2.2	4
7 ²	Surface plasmon resonance behaviors of a highly Ga-doped ZnO nano-grating structure. <i>Optical Materials Express</i> , 2019 , 9, 1826	2.6	4
71	Emission behaviors of colloidal quantum dots linked onto synthesized metal nanoparticles. <i>Nanotechnology</i> , 2020 , 31, 095201	3.4	4
70	Combined effects of surface plasmon coupling and FEster resonance energy transfer on the light color conversion behaviors of colloidal quantum dots on an InGaN/GaN quantum-well nanodisk structure. <i>Nanotechnology</i> , 2021 , 32, 135206	3.4	4
69	Cancer cell death pathways caused by photothermal and photodynamic effects through gold nanoring induced surface plasmon resonance. <i>Nanotechnology</i> , 2017 , 28, 275101	3.4	3
68	Formation of Surface Silver Nano-network Structures through Hot Electron Regulated Diffusion-limited Aggregation. <i>Scientific Reports</i> , 2019 , 9, 6997	4.9	3
67	AlGaN nano-shell structure on a GaN nanorod formed with the pulsed MOCVD growth. <i>Nanotechnology</i> , 2019 , 30, 275201	3.4	3
66	Localized Surface Plasmon Coupled Light-Emitting Diodes With Buried and Surface Ag Nanoparticles. <i>IEEE Photonics Technology Letters</i> , 2014 , 26, 1699-1702	2.2	3
65	Transient behaviors of surface plasmon coupling with a light emitter. <i>Applied Physics Letters</i> , 2008 , 93, 153104	3.4	3
64	Ultrafast pump-probe spectroscopy in the UV-blue range with an extremely broad probe spectrum for the carrier relaxation study in an InGaN thin film with indium-rich nano-clusters. <i>Optics Express</i> , 2007 , 15, 3417-25	3.3	3
63	Process Algorithms for Resolution Improvement and Contrast Enhancement in Optical Coherence Tomography. <i>Optical Review</i> , 2003 , 10, 567-571	0.9	3
62	Quantum dot formation in InGaN/GaN quantum well structures with silicon doping and the mechanisms for radiative efficiency improvement. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2003 , 1093-1096		3

61	Quantum-well thickness dependence of stimulated emission in InGaN/GaN structures. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2003 , 2610-2613		3	
60	Carrier localization effect in polarized InGaN multiple quantum wells. <i>Physica Status Solidi C:</i> Current Topics in Solid State Physics, 2005 , 2, 2753-2756		3	
59	Nanostructures and optical characteristics of ZnO thin-film-like samples grown on GaN. <i>Nanotechnology</i> , 2005 , 16, 3084-3091	3.4	3	
58	Gratinglike modulation of GaAs/AlGaAs quantum well intermixing fabricated with laser interference. <i>Applied Physics Letters</i> , 1998 , 72, 2808-2810	3.4	3	
57	On the coexistence of particle and turbulence scattering. <i>Journal of the Acoustical Society of America</i> , 1986 , 80, 1495-1500	2.2	3	
56	Surface plasmon coupling effects on the ffister resonance energy transfer from quantum dot into rhodamine 6G. <i>Nanotechnology</i> , 2021 , 32,	3.4	3	
55	Wide range variation of resonance wavelength of GaZnO plasmonic metamaterials grown by molecular beam epitaxy with slight modification of Zn effusion cell temperatures. <i>Journal of Alloys and Compounds</i> , 2021 , 870, 159434	5.7	3	
54	Control of pore structure in a porous gold nanoparticle for effective cancer cell damage. <i>Nanotechnology</i> , 2019 , 30, 025101	3.4	3	
53	Enhancements of Cancer Cell Damage Efficiencies in Photothermal and Photodynamic Processes through Cell Perforation and Preheating with Surface Plasmon Resonance of Gold Nanoring. <i>Molecules</i> , 2018 , 23,	4.8	3	
52	Thermal Effects in a Bendable InGaN/GaN Quantum-Well Light-Emitting Diode. <i>IEEE Photonics Technology Letters</i> , 2014 , 26, 1442-1445	2.2	2	
51	Sacrificial Structure for Effective Sapphire Substrate Liftoff Based on Photoelectrochemical Etching. <i>IEEE Photonics Technology Letters</i> , 2015 , 27, 770-773	2.2	2	
50	Void Structures in Regularly Patterned ZnO Nanorods Grown with the Hydrothermal Method. <i>Journal of Nanomaterials</i> , 2014 , 2014, 1-11	3.2	2	
49	Two-reference swept-source optical coherence tomography of high operation flexibility. <i>Optics Express</i> , 2012 , 20, 28418-30	3.3	2	
48	Clinical diagnosis of oral submucous fibrosis with optical coherence tomography 2009,		2	
47	Impact of post-growth thermal annealing on emission of InGaN/GaN multiple quantum wells. <i>Physica Status Solidi A</i> , 2004 , 201, 221-224		2	
46	Resolution Improvement in Optical Coherence Tomography with Segmented Spectrum Management. <i>Optical and Quantum Electronics</i> , 2005 , 37, 1165-1173	2.4	2	
45	P-type doping in GaN through Be implantation. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2005 , 2, 2415-2419		2	
44	Recombination mechanism of InGaN multiple quantum wells grown by metalorganic chemical vapor deposition. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2005 , 2, 2377-2380		2	

43	Numerical simulation on pulsed operation of an all-semiconductor optical amplifier nonlinear loop device. <i>Journal of Lightwave Technology</i> , 2001 , 19, 1768-1776	4	2
42	Nonlinear polarization switching in a semiconductor single quantum well optical amplifier. <i>Applied Physics Letters</i> , 1995 , 67, 2114-2116	3.4	2
41	Enhancing deep-UV emission at 234 nm by introducing a truncated pyramid AlN/GaN nanostructure with fine-tuned multiple facets <i>Nanoscale</i> , 2022 , 14, 653-662	7.7	2
40	Improvement of p-Type AlGaN Conductivity with an Alternating Mg-Doped/Un-Doped AlGaN Layer Structure. <i>Micromachines</i> , 2021 , 12,	3.3	2
39	Highly-Conductive, Transparent Ga-Doped ZnO Nanoneedles for Improving the Efficiencies of GaN Light-Emitting Diode and Si Solar Cell. <i>ECS Journal of Solid State Science and Technology</i> , 2020 , 9, 01500)2 ²	2
38	Effects of Surface Plasmon Coupling on the Whispering-Gallery Resonance in a Hexagonal Nanowire Cavity Structure. <i>Plasmonics</i> , 2020 , 15, 39-49	2.4	2
37	Fister resonance energy transfer in surface plasmon coupled color conversion processes of colloidal quantum dots. <i>Optics Express</i> , 2021 , 29, 4067-4081	3.3	2
36	Thermally induced variations of strain condition and emission behavior in flat and bendable light-emitting diodes on different substrates. <i>Optics Express</i> , 2015 , 23, 15491-503	3.3	1
35	Surface Plasmon Resonance-Induced Diffusion-Limited Aggregation in the Formation of Ag/AgOx Nanonetworks as Broad-Spectrum Transparent Conductors. <i>ACS Applied Nano Materials</i> , 2020 , 3, 11399	9-₹f40	7 ¹
34	Resonance Behaviors of Localized Surface Plasmon on an Ag/GaN Nano-Grating Interface for Light-Emitting Diode Application. <i>Plasmonics</i> , 2018 , 13, 2293-2304	2.4	1
33	Suppression of defect-related luminescence in laser-annealed InGaN epilayers. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2012 , 9, 1021-1023		1
32	Effective energy coupling and preservation in a surface plasmon-light emitter coupling system on a metal nanostructure. <i>Nanotechnology</i> , 2009 , 20, 135202	3.4	1
31	Fabrication of photonic crystal light-emitting diode with photoelectrochemical wet etching and phase mask interference 2008 ,		1
30	Phosphor-free all-semiconductor white-light light-emitting devices 2006 ,		1
29	Monte Carlo simulation approach for a quantitative characterization of the band edge in InGaN quantum wells. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2005 , 2, 1023-1026		1
28	ULTRAFAST OPTICS IMAGING BASED ON POLARIZATION-DISCRIMINATION TECHNIQUES IN FILAMENTOUS TISSUES. <i>Biomedical Engineering - Applications, Basis and Communications</i> , 2002 , 14, 237	-242	1
27	Formation of silicon surface gratings with high-pulse-energy ultraviolet laser. <i>Journal of Applied Physics</i> , 2000 , 88, 6162-6169	2.5	1
26	RTP Temperature Measurements Using Si Grating Prepared by Laser Ablation for Large Diameter Wafer Applications. <i>Materials Research Society Symposia Proceedings</i> , 1998 , 525, 121		1

25	All-optical switching and passive mode-locking based on non-linear polarization rotation in a semiconductor quantum well amplifier. <i>Optical and Quantum Electronics</i> , 1996 , 28, 1217-1227	2.4	1
24	Evaluating particle scattering effects by using turbulence scattering theories. <i>IEEE Transactions on Antennas and Propagation</i> , 1986 , 34, 1189-1195		1
23	Transport of the mutual coherence functions and the intensity of a backscattered pulse in a random medium. <i>IEEE Transactions on Antennas and Propagation</i> , 1985 , 33, 851-859		1
22	Growth Mechanism of InP Nanostructure Arrays by Self-Catalyzed Selective Area Epitaxy: A Deep Understanding of Thermodynamic and Kinetic Theories. <i>Crystal Growth and Design</i> , 2021 , 21, 988-994	3.5	1
21	Current penetration depth and effective conductivity of a nano-scale p-GaN/u-GaN alternating-layer p-type structure. <i>Superlattices and Microstructures</i> , 2018 , 124, 107-112	2.8	1
20	Effects of thermal annealing on quantum-dot-like structure of medium indium-content InGaN/GaN multiquantum wells. <i>Journal of Materials Science: Materials in Electronics</i> , 2003 , 14, 49-53	2.1	O
19	Simulation Study of the Effect of Surface Plasmon Coupling on FEster Resonance Energy Transfer Behavior. <i>Plasmonics</i> ,1	2.4	0
18	Theoretical analysis of a white-light LED array based on a GaN nanorod structure. <i>Applied Optics</i> , 2020 , 59, 2345-2351	1.7	O
17	Important role of surface plasmon coupling with the quantum wells in a surface plasmon enhanced color-converting structure of colloidal quantum dots on quantum wells. <i>Optics Express</i> , 2020 , 28, 13352	-∮3³36 [·]	7 ^O
16	Hole mobility behavior in Al-gradient polarization-induced p-type AlGaN grown on GaN template. <i>Applied Physics Letters</i> , 2022 , 120, 022103	3.4	O
15	Defect study of GaN based LED structure by electron beam induced current. <i>Physica Status Solidi C:</i> Current Topics in Solid State Physics, 2014 , 11, 734-737		
14	Photothermal Behaviors of Flowing Media Caused by Localized Surface Plasmon Resonance of Au Nanorings. <i>Plasmonics</i> , 2015 , 10, 1565-1572	2.4	
13	Extraordinary N atom tunneling in formation of InN shell layer on GaN nanorod m-plane sidewall. <i>Nanotechnology</i> , 2014 , 25, 495705	3.4	
12	Unintentional annealing of the active layer in the growth of InGaN/GaN quantum well light-emitting diode structures. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2013 , 210, 1657-1662	1.6	
11	Spiral Deposition with Alternating Indium Composition in Growing an InGaN Nanoneedle with the Vapor-Liquid-Solid Growth Mode. <i>Journal of Nanomaterials</i> , 2012 , 2012, 1-7	3.2	
10	Twenty-three new microsatellite loci in the stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae). <i>Molecular Ecology Resources</i> , 2009 , 9, 271-3	8.4	
9	Carrier dynamics in GaN layers overgrown on nanocolumnar structures. <i>Physica Status Solidi C:</i> Current Topics in Solid State Physics, 2010 , 7, 1856-1858		
8	Optical Imaging and Tissue Characterization with Polarization Discrimination of Time-Gated Signals. <i>Optical Review</i> , 2003 , 10, 488-492	0.9	

- Thermal annealing effects on the optical properties of high-indium InGaN epi-layers. *Physica Status Solidi C: Current Topics in Solid State Physics*, **2003**, 2654-2657
- Characteristics of amplified spontaneous emission of high indium content InGaN/GaN quantum wells with various silicon doping conditions. *Physica Status Solidi C: Current Topics in Solid State Physics*, **2003**, 2670-2673
- Activation of p-Type GaN with Irradiation of the Second Harmonics of a Q-Switched Nd: YAG Laser.

 Physica Status Solidi (B): Basic Research, **2001**, 228, 357-360
- 46.2: Finite-Source Dye-Diffusion Thermal Transfer for Doping and Color Integration in Organic
 Light-Emitting Diodes and Displays. *Digest of Technical Papers SID International Symposium*, **2000**, 0.5
 31, 1080-1083
- CLUSTERING NANOSTRUCTURES AND OPTICAL CHARACTERISTICS IN INGAN/GAN QUANTUM-WELL STRUCTURES WITH SILICON DOPING **2006**, 345-368
- 2 PASSIVE MODE-LOCKING TECHNIQUES OF LASERS. Selected Topics in Electornics and Systems, 1998, 25-45
- Film Thickness Dependence of Surface Plasmon Resonance Behavior at a Grating Structure of Highly Ga-Doped ZnO. *Physica Status Solidi (A) Applications and Materials Science*, **2021**, 218, 2000150