Bozena Czerny

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/405998/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Slim accretion disks. Astrophysical Journal, 1988, 332, 646.	4.5	1,198
2	Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies. Journal of High Energy Astrophysics, 2022, 34, 49-211.	6.7	350
3	Constraints on quasar accretion disks from the optical/ultraviolet/soft X-ray big bump. Astrophysical Journal, 1987, 321, 305.	4.5	211
4	The origin of the broad line region in active galactic nuclei. Astronomy and Astrophysics, 2011, 525, L8.	5.1	185
5	Fractal X-ray time variability and spectral invariance of the Seyfert galaxy NGC5506. Nature, 1987, 325, 696-698.	27.8	140
6	ACCRETION DISK MODEL OF SHORT-TIMESCALE INTERMITTENT ACTIVITY IN YOUNG RADIO SOURCES. Astrophysical Journal, 2009, 698, 840-851.	4.5	125
7	Evolution of active galaxies: black-hole mass–bulge relations for narrow line objects. New Astronomy, 2001, 6, 321-329.	1.8	114
8	Universal spectral shape of high accretion rate AGN. Astronomy and Astrophysics, 2003, 412, 317-329.	5.1	111
9	Radiation Pressure Instability Driven Variability in the Accreting Black Holes. Astrophysical Journal, 2002, 576, 908-922.	4.5	100
10	The iron Formula line from a partially ionized reflecting medium in an active galactic nucleus. Monthly Notices of the Royal Astronomical Society, 1994, 266, 653-668.	4.4	95
11	Evolution of an Accretion Disk in an Active Galactic Nucleus. Astrophysical Journal, 1996, 458, 491.	4.5	82
12	Evolution of a neutrino-cooled disc in gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2004, 355, 950-958.	4.4	77
13	ChandraSurvey of Radioâ€quiet, Highâ€Redshift Quasars. Astrophysical Journal, 2003, 588, 119-127.	4.5	71
14	The Quasar Main Sequence Explained by the Combination of Eddington Ratio, Metallicity, and Orientation. Astrophysical Journal, 2019, 882, 79.	4.5	69
15	Black hole masses from power density spectra: determinations and consequences. Monthly Notices of the Royal Astronomical Society, 2001, 325, 865-874.	4.4	68
16	The structure and radiation spectra of illuminated accretion discs in active galactic nuclei - I. Moderate illumination. Monthly Notices of the Royal Astronomical Society, 2002, 332, 799-813.	4.4	67
17	Possible mechanism for multiple changing-look phenomena in active galactic nuclei. Astronomy and Astrophysics, 2020, 641, A167.	5.1	65
18	Modeling of the Quasar Main Sequence in the Optical Plane. Astrophysical Journal, 2018, 866, 115.	4.5	64

#	Article	IF	CITATIONS
19	Vertical structure of accretion discs with hot coronae in active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 1999, 305, 481-491.	4.4	62
20	On different types of instabilities in black hole accretion discs: implications for X-ray binaries and active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2011, 414, 2186-2194.	4.4	62
21	Extinction due to amorphous carbon grains in red quasars from the Sloan Digital Sky Survey. Monthly Notices of the Royal Astronomical Society, 2004, 348, L54-L57.	4.4	58
22	Failed Radiatively Accelerated Dusty Outflow Model of the Broad Line Region in Active Galactic Nuclei. I. Analytical Solution. Astrophysical Journal, 2017, 846, 154.	4.5	57
23	Warm and optically thick dissipative coronae above accretion disks. Astronomy and Astrophysics, 2015, 580, A77.	5.1	56
24	Radiation Pressure Instability as a Variability Mechanism in the Microquasar GRS 1915+105. Astrophysical Journal, 2000, 542, L33-L36.	4.5	56
25	Constraints for the accretion disk evaporation rate in AGN from the existence of the Broad Line Region. Astronomy and Astrophysics, 2004, 428, 39-49.	5.1	55
26	Radiation spectra of warm and optically thick coronae in AGNs. Astronomy and Astrophysics, 2020, 634, A85.	5.1	54
27	Accretion discs with accreting coronae in active galactic nuclei - II. The nuclear wind. Monthly Notices of the Royal Astronomical Society, 1997, 286, 848-864.	4.4	52
28	Two-phase radiative/conductive equilibrium in active galactic nuclei and galactic black holes. Monthly Notices of the Royal Astronomical Society, 2000, 316, 473-478.	4.4	51
29	Can Reverberation-measured Quasars Be Used for Cosmology?. Astrophysical Journal, 2019, 883, 170.	4.5	51
30	X-ray spectra of PG quasars. II - The X-ray-ultraviolet excess of PG 1211 + 143. Astrophysical Journal, 1987, 314, 699.	4.5	51
31	Black hole mass estimation from X-ray variability measurements in active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2004, 350, L26-L30.	4.4	49
32	Persistent emission and bursts from Aquila X-1 observed by Einstein. Astrophysical Journal, 1987, 312, 122.	4.5	49
33	Insight-HXMT observations of jet-like corona in a black hole X-ray binary MAXI J1820+070. Nature Communications, 2021, 12, 1025.	12.8	48
34	Towards equation of state of dark energy from quasar monitoring: Reverberation strategy. Astronomy and Astrophysics, 2013, 556, A97.	5.1	48
35	High-frequency X-ray variability as a mass estimator of stellar and supermassive black holes. Monthly Notices of the Royal Astronomical Society, 0, 383, 741-749.	4.4	47
36	Constraints on the black hole spin in the quasar SDSS J094533.99+100950.1. Monthly Notices of the Royal Astronomical Society, 2011, 415, 2942-2952.	4.4	47

#	Article	IF	CITATIONS
37	NLS1 galaxies and estimation of their central black hole masses from the X-ray excess variance method. Monthly Notices of the Royal Astronomical Society, 2009, 394, 2141-2152.	4.4	46
38	What Do the Ultraviolet Spectra of Narrowâ€Line Seyfert 1 Galaxies Tell Us about Their Broadâ€Line Regions?. Astrophysical Journal, 2000, 542, 692-702.	4.5	45
39	On the Turbulent αâ€Disks and the Intermittent Activity in Active Galactic Nuclei. Astrophysical Journal, 2004, 602, 595-602.	4.5	44
40	The structure and radiation spectra of illuminated accretion disks in AGN. Astronomy and Astrophysics, 2004, 420, 1-16.	5.1	44
41	Modeling the warm absorber in active galactic nuclei. Astronomy and Astrophysics, 2006, 452, 1-13.	5.1	41
42	The role of absorption and reflection in the soft X-ray excess of Active Galactic Nuclei. Astronomy and Astrophysics, 2006, 449, 493-508.	5.1	41
43	The pattern of accretion flow on to Sgr A. Monthly Notices of the Royal Astronomical Society, 2006, 370, 219-228.	4.4	39
44	Time Delay Measurement of Mg ii Line in CTS C30.10 with SALT. Astrophysical Journal, 2019, 880, 46.	4.5	39
45	The role of the central stellar cluster in active galactic nuclei. Astronomy and Astrophysics, 2002, 387, 804-817.	5.1	37
46	The power density spectrum of NGC 5548 and the nature of its variability. Monthly Notices of the Royal Astronomical Society, 1999, 303, 148-156.	4.4	35
47	Time-delays between the soft and hard X-ray bands in GRS 1915 + 105. Monthly Notices of the Royal Astronomical Society, 2005, 356, 205-216.	4.4	35
48	A TEST OF THE FORMATION MECHANISM OF THE BROAD LINE REGION IN ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2016, 832, 15.	4.5	35
49	Variability of accretion flow in the core of the Seyfert galaxy NGC 4151. Monthly Notices of the Royal Astronomical Society, 2003, 342, 1222-1240.	4.4	33
50	Time-delay Measurement of Mg ii Broad-line Response for the Highly Accreting Quasar HE 0413-4031: Implications for the Mg ii–based Radius–Luminosity Relation. Astrophysical Journal, 2020, 896, 146.	4.5	33
51	High Metal Content of Highly Accreting Quasars. Astrophysical Journal, 2021, 910, 115.	4.5	33
52	Time Delay of Mg ii Emission Response for the Luminous Quasar HE 0435-4312: toward Application of the High-accretor Radius–Luminosity Relation in Cosmology. Astrophysical Journal, 2021, 912, 10.	4.5	32
53	PRINCIPAL COMPONENT ANALYSIS OF THE SPECTRAL ENERGY DISTRIBUTION AND EMISSION LINE PROPERTIES OF RED 2MASS ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2009, 692, 1180-1189.	4.5	31
54	Hysteresis effects and diagnostics of the shock formation in low angular momentum axisymmetric accretion in the Kerr metric. New Astronomy, 2012, 17, 254-271.	1.8	31

#	Article	IF	CITATIONS
55	The dust origin of the Broad Line Region and the model consequences for AGN unification scheme. Advances in Space Research, 2015, 55, 1806-1815.	2.6	31
56	THE INTERMEDIATE-LINE REGION IN ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2016, 831, 68.	4.5	31
57	Consistency of the black hole mass determination in AGN from the reverberation and the X-ray excess variance method. Monthly Notices of the Royal Astronomical Society, 2006, 370, 1534-1540.	4.4	29
58	Standardizing reverberation-measured Mg II time-lag quasars, by using the radius–luminosity relation, and constraining cosmological model parameters. Monthly Notices of the Royal Astronomical Society, 2021, 508, 4722-4737.	4.4	29
59	The Nature of the Emission Components in the Quasar/NLS1 PG 1211+143. Astrophysical Journal, 2001, 557, 408-420.	4.5	29
60	A cloud model of active galactic nuclei: the iron Kα line diagnostics. Monthly Notices of the Royal Astronomical Society, 2000, 318, 547-560.	4.4	28
61	Study of Very Short Gamma-Ray Bursts: New Results from BATSE and Konus. Astrophysical Journal, 2005, 633, L73-L76.	4.5	28
62	The nature of the intranight variability of radio-quiet quasars. Monthly Notices of the Royal Astronomical Society, 2008, 386, 1557-1567.	4.4	28
63	Effect of Electromagnetic Interaction on Galactic Center Flare Components. Astrophysical Journal, 2020, 897, 99.	4.5	28
64	The mass of the black hole in RE J1034+396. Astronomy and Astrophysics, 2016, 594, A102.	5.1	26
65	Modified viscosity in accretion disks. Astronomy and Astrophysics, 2017, 603, A110.	5.1	26
66	CLOUDY View of the Warm Corona. Astrophysical Journal, 2019, 875, 133.	4.5	26
67	Constraining the charge of the Galactic centre black hole. Journal of Physics: Conference Series, 2019, 1258, 012031.	0.4	26
68	SDSS J094533.99+100950.1 - the remarkable weak emission line quasar. Monthly Notices of the Royal Astronomical Society, 2010, , .	4.4	25
69	The Origin of Emission and Absorption Features in Ton S180ChandraObservations. Astrophysical Journal, 2004, 600, 96-105.	4.5	24
70	Hot-spot model for accretion disc variability as random process. Astronomy and Astrophysics, 2008, 487, 815-830.	5.1	24
71	Astronomical Distance Determination in the Space Age. Space Science Reviews, 2018, 214, 1.	8.1	24
72	THE UNIVERSAL "HEARTBEAT―OSCILLATIONS IN BLACK HOLE SYSTEMS ACROSS THE MASS-SCALE. Astrophysical Journal, 2016, 833, 79.	4.5	22

#	Article	IF	CITATIONS
73	The structure and X-ray radiation spectra of illuminated accretion disks in AGN. Astronomy and Astrophysics, 2006, 454, 741-752.	5.1	22
74	Scatter Analysis along the Multidimensional Radius–Luminosity Relations for Reverberation-mapped Mg ii Sources. Astrophysical Journal, 2020, 903, 86.	4.5	22
75	Testing the X-ray variability of active galactic nuclei with the non-linear prediction method. Monthly Notices of the Royal Astronomical Society, 1997, 285, 365-373.	4.4	21
76	ABSORPTION MEASURE DISTRIBUTION IN Mrk 509. Astrophysical Journal, 2015, 815, 83.	4.5	21
77	Weak soft X-ray excesses need not result from the high-frequency tail of the optical/ultraviolet bump in active galactic nuclei. Astrophysical Journal, 1994, 431, L5.	4.5	21
78	Do reverberation-measured HÎ ² quasars provide a useful test of cosmology?. Monthly Notices of the Royal Astronomical Society, 2022, 513, 1985-2005.	4.4	21
79	Interpretation of Departure from the Broad-line Region Scaling in Active Galactic Nuclei. Astrophysical Journal, 2019, 870, 84.	4.5	20
80	Properties of the two-temperature corona model for active galactic nuclei and galactic black hole X-ray Binaries. New Astronomy, 2000, 5, 7-24.	1.8	19
81	Irradiation of accretion discs in active galactic nuclei due to the presence of a warm absorber. Monthly Notices of the Royal Astronomical Society, 2004, 355, 1080-1090.	4.4	19
82	TESTING WIND AS AN EXPLANATION FOR THE SPIN PROBLEM IN THE CONTINUUM-FITTING METHOD. Astrophysical Journal, 2016, 821, 104.	4.5	19
83	Slim Accretion Disks: Theory and Observational Consequences. Universe, 2019, 5, 131.	2.5	19
84	AGN X-ray light curves – shot noise or low-dimensional attractor?. Monthly Notices of the Royal Astronomical Society, 1993, 261, 125-143.	4.4	18
85	Reprocessing of X-rays in AGN. Astronomy and Astrophysics, 2002, 387, 63-75.	5.1	18
86	The model constraints from the observed trends for the quasi-periodic oscillation in RE J1034+396. Astronomy and Astrophysics, 2010, 524, A26.	5.1	18
87	SALT long-slit spectroscopy of LBQS 2113-4538: variability of the Mg II and Fe II component. Astronomy and Astrophysics, 2014, 562, A34.	5.1	18
88	Intermediate-line Emission in AGNs: The Effect of Prescription of the Gas Density. Astrophysical Journal, 2018, 856, 78.	4.5	17
89	Iron lines from transient and persisting hot spots on AGN accretion disks. Astronomy and Astrophysics, 2007, 475, 155-168.	5.1	17
90	The Picture of BLR in 2.5D FRADO: Dynamics and Geometry. Astrophysical Journal, 2021, 920, 30.	4.5	17

#	Article	lF	CITATIONS
91	Modelling broad emission lines in active galactic nuclei. Open Astronomy, 2019, 28, 200-212.	0.6	16
92	The CaFe Project: Optical Fe ii and Near-infrared Ca ii Triplet Emission in Active Galaxies. I. Photoionization Modeling. Astrophysical Journal, 2020, 902, 76.	4.5	16
93	Accretion of low angular momentum material onto black holes: radiation properties of axisymmetric MHDÂflows. Astronomy and Astrophysics, 2007, 474, 1-13.	5.1	15
94	SALT long-slit spectroscopy of CTS C30.10: two-component Mg II line. Astronomy and Astrophysics, 2014, 570, A53.	5.1	15
95	Accreting corona model of the X-ray variability in soft state X-ray binaries and active galactic nuclei. Astronomy and Astrophysics, 2007, 466, 793-803.	5.1	15
96	Conditions for thermal instability in the Galactic Centre mini-spiral region. Monthly Notices of the Royal Astronomical Society, 2014, 445, 4385-4394.	4.4	14
97	Radiation pressure on dust explaining the low ionized broad emission lines in active galactic nuclei. Astronomy and Astrophysics, 2022, 663, A77.	5.1	14
98	Multiple accretion events as a trigger for Sagittarius A* activity. Astronomy and Astrophysics, 2013, 555, A97.	5.1	13
99	Theoretical spectra of nonmagnetized low-mass X-ray binaries. Astrophysical Journal, 1986, 311, 241.	4.5	13
100	The role of an extended corona in the formation of emission lines and continuum in active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 1997, 285, 725-734.	4.4	12
101	Flare-induced fountains and buried flares in AGN. Astronomy and Astrophysics, 2004, 428, 353-363.	5.1	12
102	Wavelet analysis of millisecond variability of Cygnus X-1 during its failed state transition. Monthly Notices of the Royal Astronomical Society, 2005, 361, 645-658.	4.4	12
103	Black hole spin dependence of general relativistic multi-transonic accretion close to the horizon. New Astronomy, 2015, 37, 81-104.	1.8	12
104	Accretion in active galactic nuclei and diskâ€ j et coupling. Astronomische Nachrichten, 2016, 337, 73-81.	1.2	12
105	Unbiased Large Spectroscopic Surveys of Galaxies Selected by SPICA Using Dust Bands. Publications of the Astronomical Society of Australia, 2017, 34, .	3.4	12
106	Models of optical/UV continuum in AGN: constraints from the NGC 5548 monitoring campaign. Monthly Notices of the Royal Astronomical Society, 1997, 284, 946-956.	4.4	11
107	The role of advection in the accreting corona model for active galactic nuclei and Galactic black holes. Monthly Notices of the Royal Astronomical Society, 2000, 314, 364-374.	4.4	11
108	On the effect of coronal outflow on spectra formation in galactic black hole systems. Monthly Notices of the Royal Astronomical Society, 2000, 318, 180-186.	4.4	11

#	Article	IF	CITATIONS
109	Absorption features in the quasar HS 1603+3820 II. Distance to the absorber obtained from photoionisation modelling. New Astronomy, 2014, 28, 70-78.	1.8	11
110	Multiphase environment of compact galactic nuclei: the role of the nuclear star cluster. Monthly Notices of the Royal Astronomical Society, 2017, 464, 2090-2102.	4.4	11
111	Properties of active galaxies at the extreme of Eigenvector 1. Astronomy and Astrophysics, 2018, 613, A38.	5.1	11
112	Depletion of Bright Red Giants in the Galactic Center during Its Active Phases. Astrophysical Journal, 2020, 903, 140.	4.5	11
113	Modelling the time-resolved quasi-periodic oscillations in active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2011, 414, 627-633.	4.4	10
114	Hot-spot model for accretion disc variability as random process. Astronomy and Astrophysics, 2013, 556, A77.	5.1	10
115	BLR Size in Realistic FRADO Model: The Role of Shielding Effect. Frontiers in Astronomy and Space Sciences, 2020, 7, .	2.8	10
116	Quasar Main Sequence in the UV Plane. Astrophysical Journal, 2020, 900, 64.	4.5	10
117	The LOFT mission concept: a status update. Proceedings of SPIE, 2016, , .	0.8	9
118	The Physical Driver of the Optical Eigenvector 1 in Quasar Main Sequence. Frontiers in Astronomy and Space Sciences, 2017, 4, .	2.8	9
119	Stellar populations in hosts of giant radio galaxies and their neighbouring galaxies. Astronomy and Astrophysics, 2019, 624, A91.	5.1	9
120	Nonthermal Emission from Fall-back Clouds in the Broad-line Region of Active Galactic Nuclei. Astrophysical Journal, 2022, 931, 39.	4.5	9
121	What Shapes the Absorption Measure Distribution in AGN Outflows?. Astrophysical Journal, 2019, 881, 78.	4.5	8
122	Broad He <scp>i</scp> Â1.08-µm absorption from the obscurer in the active galaxy NGCÂ5548. Monthly Notices of the Royal Astronomical Society, 2020, 500, 2063-2075.	4.4	8
123	Viewing Angle Observations and Effects of Evolution with Redshift, Black Hole Mass, and Eddington Ratio in Quasar-based Cosmology. Astrophysical Journal, 2022, 925, 215.	4.5	8
124	Modeling the UBVRI time delays in MrkÂ335. Astronomy and Astrophysics, 2007, 464, 167-173.	5.1	7
125	Observational constraints on the nature of very short gamma-ray bursts. New Astronomy, 2011, 16, 33-45.	1.8	7
126	SALT long-slit spectroscopy of quasar HE 0435-4312: fast displacement of the Mg II emission line. Astronomy and Astrophysics, 2017, 601, A32.	5.1	7

8

#	Article	IF	CITATIONS
127	The CaFe Project: Optical Fe II and Near-infrared Ca II Triplet Emission in Active Galaxies. II. The Driver(s) of the Ca II and Fe II and Its Potential Use as a Chemical Clock. Astrophysical Journal, 2021, 918, 29.	4.5	7
128	Thermal instability in X-ray photoionized media in active galactic nuclei. Astronomy and Astrophysics, 2009, 499, 349-355.	5.1	7
129	The main sequence of quasars: The taming of the extremes. Astronomische Nachrichten, 2022, 343, .	1.2	7
130	On the origin of the bimodal duration distribution of gamma-ray bursts and the subjet model. Monthly Notices of the Royal Astronomical Society, 2006, 365, 874-884.	4.4	6
131	Low angular momentum flow model of Sgr A* activity. Journal of Physics: Conference Series, 2008, 131, 012001.	0.4	6
132	Quasar main sequence: A line or a plane. Astronomy and Astrophysics, 2019, 632, A41.	5.1	6
133	Accretion discs with accreting coronae in AGN – I. Solutions in hydrostatic equilibrium. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	5
134	Disk/corona model: The transition to ADAF. New Astronomy Reviews, 2000, 44, 439-441.	12.8	5
135	The flare model for X-ray variability of NGC 4258. Astronomy and Astrophysics, 2011, 530, A136.	5.1	5
136	On the efficiency of the Blandford–Znajek mechanism for low angular momentum relativistic accretion. Monthly Notices of the Royal Astronomical Society: Letters, 2012, 421, L24-L28.	3.3	5
137	Self-Consistent Dynamical Model of the Broad Line Region. Frontiers in Astronomy and Space Sciences, 2017, 4, .	2.8	5
138	Linear spectropolarimetric analysis of fairall 9 with VLT/FORS2. Monthly Notices of the Royal Astronomical Society, 2021, 508, 79-99.	4.4	5
139	Response of the warm absorber cloud to a variable nuclear flux in active galactic nuclei. Astronomy and Astrophysics, 2007, 467, 971-978.	5.1	5
140	Clumpy Wind Accretion in Cygnus X-1. Astrophysical Journal, 2020, 904, 21.	4.5	5
141	Magnetic flares in Active Galactic Nuclei: modeling the iron Kα line. Astronomische Nachrichten, 2006, 327, 977-980.	1.2	4
142	Modeling time delays in the X-ray spectrum of the Seyfert galaxy MCG-6-30-15. Astronomy and Astrophysics, 2007, 466, 865-873.	5.1	4
143	QUASI-STAR JETS AS UNIDENTIFIED GAMMA-RAY SOURCES. Astrophysical Journal Letters, 2012, 755, L15.	8.3	4
144	The hypothesis of the dust origin of the Broad Line Region in Active Galactic Nuclei. Journal of Physics: Conference Series, 2012, 372, 012013.	0.4	4

#	Article	IF	CITATIONS
145	Local Stability and Global Instability in Iron-opaque Disks. Astrophysical Journal, 2017, 845, 20.	4.5	4
146	On the Intermediate Line Region in AGNs. Frontiers in Astronomy and Space Sciences, 2017, 4, .	2.8	4
147	Viewing Angle Effects in Quasar Application to Cosmology. Astrophysical Journal, 2021, 909, 58.	4.5	4
148	Ionization Instability Driven Outbursts in SXTs. Astrophysical Journal, 2021, 912, 110.	4.5	4
149	Modeling changingâ€look active galactic nuclei phenomenon in <scp>1D</scp> using accretion disk instabilities. Astronomische Nachrichten, 2022, 343, .	1.2	4
150	Multiwavelength temporal and spectral study of TeV blazar 1ES 1727+502 during 2014–2021. Monthly Notices of the Royal Astronomical Society, 2022, 515, 2633-2645.	4.4	4
151	Absorption spectrum of the quasar HS1603+3820. Astronomy and Astrophysics, 2007, 476, 1205-1217.	5.1	3
152	Probing broad-line region of the weak line quasar SDSS J094533.99+100950.1. Journal of Physics: Conference Series, 2012, 372, 012060.	0.4	3
153	The UV spectra of NLS1s – implications for their broad line regions. New Astronomy Reviews, 2000, 44, 573-575.	12.8	2
154	Evaporation of accretion disks: mechanism and observational consequences. Advances in Space Research, 2001, 28, 439-443.	2.6	2
155	Universal spectral shape of high accretion rate AGN. Nuclear Physics, Section B, Proceedings Supplements, 2004, 132, 201-204.	0.4	2
156	Geometry of the Broad Line Region in AGN. AIP Conference Proceedings, 2005, , .	0.4	2
157	Comparison Of VSB From BATSE, KONUS And SWIFT. AIP Conference Proceedings, 2007, , .	0.4	2
158	The Relationship between Mg ii Broad Emission and Quasar Inclination Angle. Frontiers in Astronomy and Space Sciences, 2017, 4, .	2.8	2
159	Mg ii Line Properties in Lobe-dominated Quasars. Astrophysical Journal, 2018, 861, 54.	4.5	2
160	Slim accretion disks around black holes. Advances in Space Research, 1988, 8, 171-173.	2.6	1
161	Soft X-Ray Excesses as a Probe of the Conditions at the Innermost Part of Accretion Flow in AGNa. Annals of the New York Academy of Sciences, 1995, 759, 538-541.	3.8	1
162	Magnetically Heated Coronae above Accretion Disks. AIP Conference Proceedings, 2005, , .	0.4	1

#	Article	IF	CITATIONS
163	QPO in RE J1034+396: model constraints from observed trends. Journal of Physics: Conference Series, 2012, 372, 012055.	0.4	1
164	Mini-spiral as source of material for Sgr A* in bright state. Proceedings of the International Astronomical Union, 2012, 8, 199-200.	0.0	1
165	Multiple accretion events as a trigger for Sagittarius A* activity. Proceedings of the International Astronomical Union, 2013, 9, 320-321.	0.0	1
166	Spectacularly rapid and regular X-ray eruptions observed from an active galaxy. Nature, 2019, 573, 354-355.	27.8	1
167	Strong Fell emission in NLS1s: An unsolved mystery. Proceedings of the International Astronomical Union, 2019, 15, 297-298.	0.0	1
168	The Main Sequence View of Quasars Accreting at High Rates: Influence of Star Formation*. Research Notes of the AAS, 2021, 5, 25.	0.7	1
169	Using vo tools to investigate Quasar Spectra (UNIQS). , 2018, , .		1
170	Accretion in Active Galactic Nuclei. , 2019, , .		1
171	A Comment on the Viscous Stability of Relativistic Keplerian Accretion Disks. Astrophysical Journal, 1999, 513, L123-L125.	4.5	1
172	Feii emission in NLS1s – originating from denser regions with higher abundances?. Proceedings of the International Astronomical Union, 2019, 15, 77-81.	0.0	1
173	Feii strength in NLS1s – dependence on the viewing angle and FWHM(Hβ). Proceedings of the International Astronomical Union, 2019, 15, 332-334.	0.0	1
174	Dust properties in Active Galactic Nuclei. New Astronomy Reviews, 1996, 40, 127-131.	0.3	0
175	Limit on the distance to gamma-ray bursts from parallax. , 1998, , .		0
176	Outflowing Coronae Above Accretion Discs in AGN and GBH. , 0, , 232-233.		0
177	X-ray energy and power spectra of Seyfert 1 and narrow line Seyfert 1 galaxies: comparison to black hole binaries. Advances in Space Research, 2001, 28, 281-293.	2.6	0
178	What Triggers the Activity Cycle in Galactic Nuclei?. , 0, , 304-305.		0
179	AGN Outbursts and Accretion Disks. , 0, , 315-316.		0
180	Accretion onto a Dupermassive Black Hole in Sgr A*. , 0, , 213-214.		0

#	Article	IF	CITATIONS
181	Comparison of the solar corona and the coronae above accretion disks surrounding black holes. AIP Conference Proceedings, 2005, , .	0.4	0
182	Spherical Accretion in Nearby Weakly Active Galactic Nuclei. AIP Conference Proceedings, 2005, , .	0.4	0
183	Accreting corona model of the X-ray variability in soft state GBH and AGN. Proceedings of the International Astronomical Union, 2006, 2, 353-354.	0.0	0
184	Radiation spectra from MHD simulations of low angular momentum flows. Proceedings of the International Astronomical Union, 2006, 2, 411-412.	0.0	0
185	Time dependent accretion onto a black hole in a disk plus corona system. Advances in Space Research, 2006, 38, 2903-2905.	2.6	0
186	X-ray variability of active galactic nuclei and the flare model. Advances in Space Research, 2006, 38, 1398-1402.	2.6	0
187	Comparison of Very Short Bursts from BATSE, KONUS and SWIFT. AIP Conference Proceedings, 2008, , .	0.4	0
188	Exploring Black Hole Accretion in Active Galactic Nuclei with Simbol-X. , 2009, , .		0
189	Probing the accretion disk - jet connection via instabilities in the inner accretion flow. From microquasars to quasars. Proceedings of the International Astronomical Union, 2010, 6, 94-95.	0.0	0
190	Modeling the X-ray variability in MCG-6-30-15: the multiple flare model. , 2010, , .		0
191	Stability of black hole accretion disks. EPJ Web of Conferences, 2012, 39, 06004.	0.3	0
192	Dusty origin of the Broad Line Region in active galaxies. Proceedings of the International Astronomical Union, 2012, 8, 21-24.	0.0	0
193	From Observations to Physical Parameters. Astrophysics and Space Science Library, 2012, , 287-336.	2.7	0
194	Models of Quasars. Astrophysics and Space Science Library, 2012, , 337-437.	2.7	0
195	Quasars as tracers of cosmic flows. Proceedings of the International Astronomical Union, 2014, 11, 344-345.	0.0	0
196	INTERMITTENCY, ACCRETION DISKS AND AGN EVOLUTION. , 2004, , .		0
197	Astronomical Distance Determination in the Space Age. Space Sciences Series of ISSI, 2018, , 283-351.	0.0	0
198	The quasar main sequence and its potential for cosmology. Proceedings of the International Astronomical Union, 2019, 15, 66-71.	0.0	0