
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4059724/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emergency responder and public health considerations for plastic sewer lining chemical waste exposures in indoor environments. Journal of Hazardous Materials, 2022, 422, 126832.	6.5	7
2	Decomposition of PVDF to delaminate cathode materials from end-of-life lithium-ion battery cathodes. Journal of Cleaner Production, 2022, 367, 133112.	4.6	19
3	Recovery of cathode materials from spent lithium-ion batteries using eutectic system of lithium compounds. Resources, Conservation and Recycling, 2021, 170, 105551.	5.3	42
4	Effects of ferric ion on the photo-treatment of nonionic surfactant Brij35 washing waste containing 2,2′,4,4′-tetrabromodiphenyl ether. Journal of Hazardous Materials, 2021, 415, 125572.	6.5	9
5	Development of novel experimental and modelled low density polyethylene (LDPE)-water partition coefficients for a range of hydrophobic organic compounds. Environmental Pollution, 2021, 291, 118223.	3.7	5
6	Polyethylene-water partition coefficients for polychlorinated biphenyls: Application of QSPR predictions models with experimental validation. Water Research, 2021, 207, 117799.	5.3	3
7	Direct recycling technologies of cathode in spent lithium-ion batteries. Clean Technologies and Recycling, 2021, 1, 124-151.	1.3	29
8	Time series analysis of water use and indirect reuse within a HUC-4 basin (Wabash) over a nine year period. Science of the Total Environment, 2020, 738, 140221.	3.9	4
9	An emerging mobile air pollution source: outdoor plastic liner manufacturing sites discharge VOCs into urban and rural areas. Environmental Sciences: Processes and Impacts, 2020, 22, 1828-1841.	1.7	7
10	Inorganic anion removal using micellar enhanced ultrafiltration (MEUF), modeling anion distribution and suggested improvements of MEUF: A review. Chemical Engineering Journal, 2020, 398, 125413.	6.6	35
11	Decomposition of complexed Pb(II) and subsequent adsorption of Pb(II) with yolk-shell Fe3O4@ hydrous zirconium oxide sphere. Journal of Colloid and Interface Science, 2019, 556, 65-73.	5.0	11
12	Considerations for emission monitoring and liner analysis of thermally manufactured sewer cured-in-place-pipes (CIPP). Journal of Hazardous Materials, 2019, 371, 540-549.	6.5	21
13	Outdoor manufacture of UV-Cured plastic linings for storm water culvert repair: Chemical emissions and residual. Environmental Pollution, 2019, 245, 1031-1040.	3.7	12
14	Critical Review: Surface Water and Stormwater Quality Impacts of Curedâ€Inâ€Place Pipe Repairs. Journal - American Water Works Association, 2018, 110, 15-32.	0.2	15
15	Investigation of the factors that influence lead accumulation onto polyethylene: Implication for potable water plumbing pipes. Journal of Hazardous Materials, 2018, 347, 242-251.	6.5	27
16	Anion recovery from water by cross-linked cationic surfactant nanoparticles across dialysis membranes. Environmental Science: Nano, 2018, 5, 1350-1360.	2.2	13
17	Application of cross-linked stearic acid nanoparticles with dialysis membranes for methylene blue recovery. Separation and Purification Technology, 2018, 204, 21-29.	3.9	16
18	Synthesis of cross-linked cationic surfactant nanoparticles for removing anions from water. Environmental Science: Nano, 2017, 4, 1534-1543.	2.2	18

#	Article	IF	CITATIONS
19	Anion Exchange on Cationic Surfactant Micelles, and a Speciation Model for Estimating Anion Removal on Micelles during Ultrafiltration of Water. Langmuir, 2017, 33, 6540-6549.	1.6	22
20	Light-independent redox reactions of graphene oxide in water: Electron transfer from NADH through graphene oxide to molecular oxygen, producing reactive oxygen species. Carbon, 2017, 123, 216-222.	5.4	23
21	Worksite Chemical Air Emissions and Worker Exposure during Sanitary Sewer and Stormwater Pipe Rehabilitation Using Cured-in-Place-Pipe (CIPP). Environmental Science and Technology Letters, 2017, 4, 325-333.	3.9	27
22	Opportunities and Challenges for Treated Wastewater Reuse in the West Bank, Tunisia, and Qatar. Transactions of the ASABE, 2017, 60, 1563-1574.	1.1	17
23	Soil microbial response to photo-degraded C60 fullerenes. Environmental Pollution, 2016, 211, 338-345.	3.7	16
24	The assessment of water use and reuse through reported data: A US case study. Science of the Total Environment, 2016, 539, 70-77.	3.9	29
25	Modeling of gas generation from the river adjacent to the manufactured gas plant. RSC Advances, 2015, 5, 9565-9573.	1.7	3
26	Environmental photochemistry of single layered graphene oxide in water. Environmental Science: Nano, 2015, 2, 136-142.	2.2	48
27	A novel method for measuring polymer–water partition coefficients. Chemosphere, 2015, 138, 973-979.	4.2	14
28	Reactive oxygen species generation and dispersant-dependent electron transfer through single-walled carbon nanotubes in water. Carbon, 2015, 89, 361-371.	5.4	14
29	Comparison of export dynamics of nutrients and animal-borne estrogens from a tile-drained Midwestern agroecosystem. Water Research, 2015, 72, 162-173.	5.3	28
30	Calibration and application of an automated seepage meter for monitoring water flow across the sediment-water interface. Environmental Monitoring and Assessment, 2015, 187, 171.	1.3	9
31	Photoreactivity of Unfunctionalized Single-Wall Carbon Nanotubes Involving Hydroxyl Radical: Chiral Dependency and Surface Coating Effect. Environmental Science & Technology, 2014, 48, 3875-3882.	4.6	30
32	Transformations of oxidized multiwalled carbon nanotubes exposed to UVC (254 nm) irradiation. Environmental Science: Nano, 2014, 1, 324-337.	2.2	29
33	Light-Independent Reactive Oxygen Species (ROS) Formation through Electron Transfer from Carboxylated Single-Walled Carbon Nanotubes in Water. Environmental Science & Technology, 2014, 48, 11330-11336.	4.6	64
34	Hormone loads exported by a tile-drained agroecosystem receiving animal wastes. Hydrological Processes, 2014, 28, 1318-1328.	1.1	29
35	PAH concentration gradients and fluxes through sand cap test cells installed in situ over river sediments containing coal tar. Environmental Sciences: Processes and Impacts, 2013, 15, 1601.	1.7	6
36	Assessing Impacts of Land-Applied Manure from Concentrated Animal Feeding Operations on Fish Populations and Communities. Environmental Science & Technology, 2012, 46, 13440-13447.	4.6	48

#	Article	IF	CITATIONS
37	Hormone Discharges from a Midwest Tile-Drained Agroecosystem Receiving Animal Wastes. Environmental Science & Technology, 2011, 45, 8755-8764.	4.6	121
38	The role of surface functionalization in the solar light-induced production of reactive oxygen species by single-walled carbon nanotubes in water. Carbon, 2011, 49, 5099-5106.	5.4	99
39	Integrating hydrograph modeling with real-time flow monitoring to generate hydrograph-specific sampling schemes. Journal of Hydrology, 2010, 393, 331-340.	2.3	15
40	Fluxes of PAHs from coal tar-impacted river sediment under variable seepage rates. Chemosphere, 2010, 80, 1261-1267.	4.2	3
41	Photochemistry of Aqueous C ₆₀ Clusters: Wavelength Dependency and Product Characterization. Environmental Science & Technology, 2010, 44, 8121-8127.	4.6	56
42	Photoreactivity of Carboxylated Single-Walled Carbon Nanotubes in Sunlight: Reactive Oxygen Species Production in Water. Environmental Science & Technology, 2010, 44, 6674-6679.	4.6	159
43	Vision of Cyberinfrastructure for End-to-End Environmental Explorations (C4E4). Journal of Hydrologic Engineering - ASCE, 2009, 14, 53-64.	0.8	10
44	Potential consolidation-induced NAPL migration from coal tar impacted river sediment under a remedial sand cap. Journal of Hazardous Materials, 2009, 162, 1364-1370.	6.5	4
45	Sorption of Buckminsterfullerene (C ₆₀) to Saturated Soils. Environmental Science & Technology, 2009, 43, 7370-7375.	4.6	20
46	Multifactor Statistical Analysis of H ₂ O ₂ -Enhanced Photodegradation of Nicotine and Phosphamidon. Industrial & Engineering Chemistry Research, 2009, 48, 3955-3963.	1.8	16
47	Hydrolysis and H2O2-assisted UV photolysis of 3-chloro-1,2-propanediol. Chemosphere, 2009, 75, 1015-1020.	4.2	7
48	Photochemical Transformation of Aqueous C ₆₀ Clusters in Sunlight. Environmental Science & Technology, 2009, 43, 362-367.	4.6	118
49	Photochemistry of Aqueous C ₆₀ Clusters: Evidence of ¹ O ₂ Formation and its Role in Mediating C ₆₀ Phototransformation. Environmental Science & Technology, 2009, 43, 5257-5262.	4.6	76
50	Solubility of C60in Solvent Mixtures. Environmental Science & Technology, 2008, 42, 845-851.	4.6	60
51	Buckminsterfullerene's (C ₆₀) Octanolâ~'Water Partition Coefficient (<i>K</i> _{ow}) and Aqueous Solubility. Environmental Science & Technology, 2008, 42, 5945-5950.	4.6	171
52	Hydrogen peroxide-assisted UV photodegradation of Lindane. Chemosphere, 2008, 72, 1700-1705.	4.2	62
53	Measuring the flux at the interface of coal-tar impacted sediment and river water near a former MGP site. Chemosphere, 2007, 68, 1020-1029.	4.2	7
54	Photodegradation of Decabromodiphenyl Ether Adsorbed onto Clay Minerals, Metal Oxides, and Sediment. Environmental Science & Technology, 2006, 40, 215-220.	4.6	214

#	Article	IF	CITATIONS
55	Partitioning of mono- and polycyclic aromatic hydrocarbons in a river sediment adjacent to a former manufactured gas plant site. Chemosphere, 2006, 62, 315-321.	4.2	13
56	Laboratory studies to characterize the efficacy of sand capping a coal tar-contaminated sediment. Chemosphere, 2006, 63, 1621-1631.	4.2	24
57	Birnessite mediated debromination of decabromodiphenyl ether. Chemosphere, 2006, 64, 1801-1807.	4.2	19
58	Education in sustainable production in US universities. Clean Technologies and Environmental Policy, 2006, 8, 38-48.	2.1	3
59	Acceleration and Quenching of the Photolysis of PCB in the Presence of Surfactant and Humic Materials. Environmental Science & Technology, 2005, 39, 9211-9216.	4.6	42
60	Solar Photodecomposition of Decabromodiphenyl Ether:Â Products and Quantum Yield. Environmental Science & Technology, 2004, 38, 4149-4156.	4.6	247
61	Heterogeneous photochemical reactions of decabromodiphenyl ether. Environmental Toxicology and Chemistry, 2003, 22, 798-804.	2.2	82
62	Innovative Surfactant/Cosolvent Technologies for Removal of NAPL and Sorbed Contaminants from Aquifers. , 2002, , 93-108.		0
63	Surfactant-assisted UV-photolysis of nitroarenes. Chemosphere, 2002, 46, 553-560.	4.2	16
64	Modeling the sequential photodechlorination of hexachlorobenzene in surfactant micelles. Water Research, 2002, 36, 843-850.	5.3	14
65	Role of pH in partitioning and cation exchange of aromatic amines on water-saturated soils. Chemosphere, 2001, 44, 627-635.	4.2	31
66	Modeling Competitive Cation Exchange of Aromatic Amines in Water-Saturated Soils. Environmental Science & Technology, 2001, 35, 2727-2733.	4.6	15
67	Effects of Surfactants on Reduction and Photolysis (>290 nm) of Nitroaromatic Compounds. Environmental Science & Technology, 2000, 34, 505-508.	4.6	40
68	Effect of Substitution on Irreversible Binding and Transformation of Aromatic Amines with Soils in Aqueous Systems. Environmental Science & Technology, 2000, 34, 3674-3680.	4.6	41
69	A Triple Layer, Planar Coordinate Model for Describing Counterion Association to Micelles. Langmuir, 2000, 16, 2450-2456.	1.6	11
70	Modeling Abiotic Processes of Aniline in Water-Saturated Soils. Environmental Science & Technology, 2000, 34, 1687-1693.	4.6	11
71	Comment on "Margules Equations Applied to PAH Solubilities in Alcoholâ^'Water Mixtures― Environmental Science & Technology, 1999, 33, 1953-1954.	4.6	2
72	Concentration non-uniformities and averages in flow-through spectrophotometric measurements. Analytica Chimica Acta, 1998, 363, 171-181.	2.6	3

#	Article	IF	CITATIONS
73	lonâ€pair association of substituted phenolates with K ⁺ in octanol. Environmental Toxicology and Chemistry, 1998, 17, 369-376.	2.2	10
74	Phototransformations of Polychlorobiphenyls in Brij 58 Micellar Solutions. Environmental Science & Technology, 1998, 32, 1989-1993.	4.6	56
75	Modeling Short-Term Soilâ^'Water Distribution of Aromatic Amines. Environmental Science & Technology, 1998, 32, 2788-2794.	4.6	39
76	Experimental study of a bimolecular reaction in Poiseuille Flow. Water Resources Research, 1998, 34, 1997-2004.	1.7	31
77	Groundwater remediation by anionic surfactant micelles - an innovative double layer model applied to Na+ and Mg2+ association with dodecylsulfate micelles. Water Science and Technology, 1998, 38, 99-106.	1.2	3
78	Induced Desorption of DDT, DDD, and DDE from a Contaminated Sediment. Journal of Environmental Engineering, ASCE, 1997, 123, 225-233.	0.7	18
79	Margules Equations Applied to PAH Solubilities in Alcoholâ^'Water Mixtures. Environmental Science & Technology, 1997, 31, 3516-3522.	4.6	30
80	Sorption of linear alcohol ethoxylate surfactant homologs to soils. Journal of Contaminant Hydrology, 1997, 28, 311-325.	1.6	27
81	Comment on "Application of Permeant/Polymer Diffusional Model to the Desorption of Polychlorinated Biphenyls from Hudson River Sediments". Environmental Science & Technology, 1995, 29, 283-284.	4.6	2
82	The phase distribution of polychlorobiphenyl congeners in surfactant-amended sediment slurries. Water Research, 1995, 29, 2387-2397.	5.3	19
83	A Quantitative Structure—Activity Relationship for Solubilization of Nonpolar Compounds by Nonionic Surfactant Micelles. ACS Symposium Series, 1995, , 24-37.	0.5	7
84	Solubilization of non-polar compounds by non-ionic surfactant micelles. Water Research, 1994, 28, 1009-1017.	5.3	147
85	Photodechlorination of Polychlorobenzene Congeners in Surfactant Micelle Solutions. Environmental Science & Technology, 1994, 28, 2415-2422.	4.6	83
86	Reaction scheme for the chlorination of ammoniacal water. Environmental Science & Technology, 1992, 26, 577-586.	4.6	377
87	Sediment- and saturated-soil-associated reactions involving an anionic surfactant (dodecyl sulfate). 2. Partition of PAH compounds among phases. Environmental Science & Technology, 1991, 25, 1039-1045.	4.6	103
88	Sediment- and saturated-soil-associated reactions involving an anionic surfactant (dodecylsulfate). 1. Precipitation and micelle formation. Environmental Science & Technology, 1991, 25, 1031-1038.	4.6	75
89	Sorption of organic acid compounds to sediments: Initial model development. Environmental Toxicology and Chemistry, 1990, 9, 1259-1268.	2.2	63
90	Distribution of hydrophobic ionogenic organic compounds between octanol and water: organic acids. Environmental Science & Technology, 1990, 24, 1795-1803.	4.6	157

#	Article	IF	CITATIONS
91	Biological Remediation of Contaminated Sediments. Journal of Great Lakes Research, 1990, 16, 337-338.	0.8	3
92	General acid catalysis of monochloramine disproportionation. Environmental Science & Technology, 1988, 22, 691-696.	4.6	75
93	Evaluation of a chloramine decomposition model incorporating general acid catalysis. Water Research, 1988, 22, 1147-1153.	5.3	25
94	Dichloramine decomposition in the presence of excess ammonia. Water Research, 1987, 21, 967-973.	5.3	41
95	Degradation of selected halogenated ethanes in anoxic sedimentâ€water systems. Environmental Toxicology and Chemistry, 1987, 6, 827-837.	2.2	63
96	A spectrophotometric study of the formation of an unidentified monochloramine decomposition product. Water Research, 1986, 20, 1067-1074.	5.3	50
97	Comment on "Kinetics of monobromamine disproportionation-dibromamine formation in aqueous ammonia solutions". Environmental Science & amp; Technology, 1985, 19, 286-287.	4.6	6