Zamantha Judith Escobedo Avellaneda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4059014/publications.pdf

Version: 2024-02-01

758635 839053 22 476 12 18 citations h-index g-index papers 23 23 23 676 docs citations times ranked all docs citing authors

#	Article	IF	Citations
1	Effect of high hydrostatic pressures on microorganisms, totalÂphenolic content and enzyme activity of mamey (Pouteria sapota) nectar. Journal of Food Science and Technology, 2022, 59, 2599-2604.	1.4	2
2	Metabolite transformation and \hat{l}^2 glucosidase activity during the high hydrostatic pressure assisted curing of vanilla beans (Vanilla planifolia) to improve phenolic compounds formation. Food Chemistry, 2022, 384, 132497.	4.2	6
3	HHP Influence on Food Quality and Bioactive Compounds: A Review of the Last Decade. , 2021, , 87-111.		8
4	Changes induced by high hydrostatic pressure in acidified and nonâ€acidified milk during Oaxaca cheese production. International Journal of Food Science and Technology, 2021, 56, 4639-4649.	1.3	1
5	High pressure processing of food-grade emulsion systems: Antimicrobial activity, and effect on the physicochemical properties. Food Hydrocolloids, 2019, 87, 307-320.	5.6	45
6	Fruit Preservation and Design of Functional Fruit Products by Vacuum Impregnation. Food Engineering Series, 2018, , 335-349.	0.3	1
7	State-of-the-Art Extraction Methodologies for Bioactive Compounds from Algal Biome to Meet Bio-Economy Challenges and Opportunities. Molecules, 2018, 23, 2953.	1.7	75
8	Minimal Processing of Fruits. Food Engineering Series, 2018, , 67-92.	0.3	1
9	The Logistic-Exponential Weibull Model as a Tool to Predict Natural Microflora Inactivation of Agave Mapsiaga Aguamiel (Agave Sap) by High Pressure Treatments. Journal of Food Processing and Preservation, 2017, 41, e12816.	0.9	8
10	Effect of high hydrostatic pressure applied to a Mexican honey to increase its microbiological and functional quality. Food and Bioproducts Processing, 2017, 102, 299-306.	1.8	16
11	Using high hydrostatic pressures to retain the antioxidant compounds and to reduce the enzymatic activity of a pitaya–pineapple (Stenocereus sp.–Fragaria ananassa) beverage. Journal of Food Science and Technology, 2017, 54, 611-619.	1.4	17
12	High Hydrostatic Pressure and Temperature Applied to Preserve the Antioxidant Compounds of Mango Pulp (Mangifera indica L.). Food and Bioprocess Technology, 2017, 10, 639-649.	2.6	15
13	Enzymatic and phytochemical stabilization of orange–strawberry–banana beverages by high hydrostatic pressure and mild heat. Food Science and Technology International, 2017, 23, 185-193.	1.1	13
14	Reaction Chemistry at High Pressure and High Temperature. Food Engineering Series, 2016, , 461-478.	0.3	5
15	Combined effect of high hydrostatic pressure and mild heat treatments on pectin methylesterase (<scp>PME</scp>) inactivation in comminuted orange. Journal of the Science of Food and Agriculture, 2015, 95, 2438-2444.	1.7	12
16	Effect of High Hydrostatic Pressure on the Content of Phytochemical Compounds and Antioxidant Activity of Prickly Pears (Opuntia ficus-indica) Beverages. Food Engineering Reviews, 2015, 7, 198-208.	3.1	61
17	High Hydrostatic Pressure Combined with Mild Temperature for the Preservation of Comminuted Orange: Effects on Functional Compounds and Antioxidant Activity. Food and Bioprocess Technology, 2015, 8, 1032-1044.	2.6	25
18	Phytochemicals and antioxidant activity of juice, flavedo, albedo and comminuted orange. Journal of Functional Foods, 2014, 6, 470-481.	1.6	81

#	Article	IF	CITATIONS
19	ANALYSIS OF THE DRYING PROCESS OF MEXICAN HOT SALSA USING THE CHARACTERISTIC CURVE MODEL. Journal of Food Processing and Preservation, 2013, 37, 441-448.	0.9	3
20	Inclusion of the variability of model parameters on shelf-life estimations for low and intermediate moisture vegetables. LWT - Food Science and Technology, 2012, 47, 364-370.	2.5	29
21	Benefits and limitations of food processing by high-pressure technologies: effects on functional compounds and abiotic contaminants Beneficios y limitaciones del procesamiento de alimentos por tecnologÃas de alta presión: efectos en componentes funcionales y contaminantes abióticos. CYTA - lournal of Food. 2011. 9. 351-364.	0.9	44
22	MOISTURE ADSORPTION ISOTHERMS OF FREEZEâ€DRIED AND AIRâ€DRIED MEXICAN RED SAUCE. Journal of Foc Process Engineering, 2011, 34, 1931-1945.	od 1.5	8