Young-Kwon Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4058776/publications.pdf Version: 2024-02-01

		687363	1058476
15	2,014	13	14
papers	citations	h-index	g-index
19	19	19	5269
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Interplay of BAF and MLL4 promotes cell type-specific enhancer activation. Nature Communications, 2021, 12, 1630.	12.8	38
2	MED1 is a lipogenesis coactivator required for postnatal adipose expansion. Genes and Development, 2021, 35, 713-728.	5.9	9
3	H3.3K4M destabilizes enhancer H3K4 methyltransferases MLL3/MLL4 and impairs adipose tissue development. Nucleic Acids Research, 2019, 47, 607-620.	14.5	1,326
4	Depletion of Nsd2-mediated histone H3K36 methylation impairs adipose tissue development and function. Nature Communications, 2018, 9, 1796.	12.8	58
5	Glucocorticoid Receptor Accelerates, but Is Dispensable for, Adipogenesis. Molecular and Cellular Biology, 2017, 37, .	2.3	69
6	Distinct Roles of Transcription Factors KLF4, Krox20, and Peroxisome Proliferator-Activated Receptor <i>γ</i> in Adipogenesis. Molecular and Cellular Biology, 2017, 37, .	2.3	44
7	Brd4 binds to active enhancers to control cell identity gene induction in adipogenesis and myogenesis. Nature Communications, 2017, 8, 2217.	12.8	161
8	HIF-1-Dependent Induction of Jumonji Domain-Containing Protein (JMJD) 3 under Hypoxic Conditions. Molecules and Cells, 2014, 37, 43-50.	2.6	74
9	Hypoxia-inducible Factor-2α-dependent Hypoxic Induction of Wnt10b Expression in Adipogenic Cells. Journal of Biological Chemistry, 2013, 288, 26311-26322.	3.4	33
10	Differentiated Embryo Chondrocyte 1 (DEC1) Represses PPARÎ ³ 2 Gene through Interacting with CCAAT/Enhancer Binding Protein Î ² (C/EBPÎ ²). Molecules and Cells, 2012, 33, 575-582.	2.6	29
11	Estrogen receptor beta inhibits transcriptional activity of hypoxia inducible factor-1 through the downregulation of arylhydrocarbon receptor nuclear translocator. Breast Cancer Research, 2011, 13, R32.	5.0	34
12	Prevention of CCAAT/enhancer-binding protein β DNA binding by hypoxia during adipogenesis Journal of Biological Chemistry, 2011, 286, 41904.	3.4	0
13	Prevention of CCAAT/Enhancer-binding Protein Î ² DNA Binding by Hypoxia during Adipogenesis. Journal of Biological Chemistry, 2010, 285, 3289-3299.	3.4	27
14	Nitric Oxide Donor, (±)- <i>S</i> -Nitroso- <i>N</i> -acetylpenicillamine, Stabilizes Transactive Hypoxia-Inducible Factor-11± by Inhibiting von Hippel-Lindau Recruitment and Asparagine Hydroxylation. Molecular Pharmacology, 2008, 74, 236-245.	2.3	48
15	Clioquinol, a Cu(II)/Zn(II) Chelator, Inhibits Both Ubiquitination and Asparagine Hydroxylation of Hypoxia-inducible Factor-1α, Leading to Expression of Vascular Endothelial Growth Factor and Erythropoietin in Normoxic Cells. Journal of Biological Chemistry, 2006, 281, 3405 <u>6-34063.</u>	3.4	58