
Brian S Clark

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4058740/publications.pdf Version: 2024-02-01

RDIAN S CLADK

#	Article	IF	CITATIONS
1	A Casz1–NuRD complex regulates temporal identity transitions in neural progenitors. Scientific Reports, 2021, 11, 3858.	1.6	18
2	Atoh7-independent specification of retinal ganglion cell identity. Science Advances, 2021, 7, .	4.7	41
3	A single-cell guide to retinal development: Cell fate decisions of multipotent retinal progenitors in scRNA-seq. Developmental Biology, 2021, 478, 41-58.	0.9	17
4	Gene regulatory networks controlling temporal patterning, neurogenesis, and cell-fate specification in mammalian retina. Cell Reports, 2021, 37, 109994.	2.9	52
5	ASCOT identifies key regulators of neuronal subtype-specific splicing. Nature Communications, 2020, 11, 137.	5.8	50
6	Zeb2 regulates the balance between retinal interneurons and Müller glia by inhibition of BMP–Smad signaling. Developmental Biology, 2020, 468, 80-92.	0.9	5
7	Single-Cell Analysis of Human Retina Identifies Evolutionarily Conserved and Species-Specific Mechanisms Controlling Development. Developmental Cell, 2020, 53, 473-491.e9.	3.1	170
8	Comprehensive identification of mRNA isoforms reveals the diversity of neural cell-surface molecules with roles in retinal development and disease. Nature Communications, 2020, 11, 3328.	5.8	69
9	Decomposing Cell Identity for Transfer Learning across Cellular Measurements, Platforms, Tissues, and Species. Cell Systems, 2019, 8, 395-411.e8.	2.9	121
10	Single-Cell RNA-Seq Analysis of Retinal Development Identifies NFI Factors as Regulating Mitotic Exit and Late-Born Cell Specification. Neuron, 2019, 102, 1111-1126.e5.	3.8	343
11	Ldb1 and Rnf12-dependent regulation of Lhx2 controls the relative balance between neurogenesis and gliogenesis in retina. Development (Cambridge), 2018, 145, .	1.2	25
12	A toolbox of immunoprecipitation-grade monoclonal antibodies to human transcription factors. Nature Methods, 2018, 15, 330-338.	9.0	58
13	SHH E176/E177-Zn2+ conformation is required for signaling at endogenous sites. Developmental Biology, 2017, 424, 221-235.	0.9	10
14	Understanding the Role of IncRNAs in Nervous System Development. Advances in Experimental Medicine and Biology, 2017, 1008, 253-282.	0.8	42
15	Control of lens development by Lhx2-regulated neuroretinal FGFs. Development (Cambridge), 2016, 143, 3994-4002.	1.2	16
16	Multiple intrinsic factors act in concert with Lhx2 to direct retinal gliogenesis. Scientific Reports, 2016, 6, 32757.	1.6	32
17	Lhx2 Is an Essential Factor for Retinal Gliogenesis and Notch Signaling. Journal of Neuroscience, 2016, 36, 2391-2405.	1.7	79
18	Yap and Taz regulate retinal pigment epithelial cell fate. Development (Cambridge), 2015, 142, 3021-32.	1.2	123

BRIAN S CLARK

#	Article	IF	CITATIONS
19	<i>Evf2 lncRNA</i> /BRG1/DLX1 interactions reveal RNA-dependent chromatin remodeling inhibition. Development (Cambridge), 2015, 142, 2641-52.	1.2	84
20	Long non-coding RNA-dependent transcriptional regulation in neuronal development and disease. Frontiers in Genetics, 2014, 5, 164.	1.1	145
21	Mirror-symmetric microtubule assembly and cell interactions drive lumen formation in the zebrafish neural rod. EMBO Journal, 2012, 32, 30-44.	3.5	59
22	Loss of Llgl1 in retinal neuroepithelia reveals links between apical domain size, Notch activity and neurogenesis. Development (Cambridge), 2012, 139, 1599-1610.	1.2	77
23	Integrin α5/fibronectin1 and focal adhesion kinase are required for lens fiber morphogenesis in zebrafish. Molecular Biology of the Cell, 2012, 23, 4725-4738.	0.9	36
24	JD induced pluripotent stem cell-derived hepatocytes faithfully recapitulate the pathophysiology of familial hypercholesterolemia. Hepatology, 2012, 56, 2163-2171.	3.6	120
25	Generation of Rabâ€based transgenic lines for <i>in vivo</i> studies of endosome biology in zebrafish. Developmental Dynamics, 2011, 240, 2452-2465.	0.8	97
26	Balanced Shh signaling is required for proper formation and maintenance of dorsal telencephalic midline structures. BMC Developmental Biology, 2010, 10, 118.	2.1	14
27	The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes and Development, 2006, 20, 1470-1484.	2.7	652