Ifor Beacham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4058485/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of signal sequence proximal residues in the mature region of bacterial secreted proteins in E. coli. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 184000.	1.4	5
2	Burkholderia pseudomallei invades the olfactory nerve and bulb after epithelial injury in mice and causes the formation of multinucleated giant glial cells in vitro. PLoS Neglected Tropical Diseases, 2020, 14, e0008017.	1.3	17
3	Novel insights into the glia limitans of the olfactory nervous system. Journal of Comparative Neurology, 2019, 527, 1228-1244.	0.9	24
4	Burkholderia pseudomallei Rapidly Infects the Brain Stem and Spinal Cord via the Trigeminal Nerve after Intranasal Inoculation. Infection and Immunity, 2016, 84, 2681-2688.	1.0	44
5	Burkholderia pseudomallei Capsule Exacerbates Respiratory Melioidosis but Does Not Afford Protection against Antimicrobial Signaling or Bacterial Killing in Human Olfactory Ensheathing Cells. Infection and Immunity, 2016, 84, 1941-1956.	1.0	20
6	Exploring Bacterial Heparinase II Activities with Defined Substrates. ChemBioChem, 2015, 16, 1205-1211.	1.3	13
7	Functional and structural characterization of a heparanase. Nature Chemical Biology, 2015, 11, 955-957.	3.9	31
8	<i>Burkholderia pseudomallei</i> sequencing identifies genomic clades with distinct recombination, accessory, and epigenetic profiles. Genome Research, 2015, 25, 129-141.	2.4	61
9	Burkholderia pseudomallei Penetrates the Brain via Destruction of the Olfactory and Trigeminal Nerves: Implications for the Pathogenesis of Neurological Melioidosis. MBio, 2014, 5, e00025.	1.8	66
10	Pathogens Penetrating the Central Nervous System: Infection Pathways and the Cellular and Molecular Mechanisms of Invasion. Clinical Microbiology Reviews, 2014, 27, 691-726.	5.7	306
11	Distinct physiological roles for the two l-asparaginase isozymes of Escherichia coli. Biochemical and Biophysical Research Communications, 2013, 436, 362-365.	1.0	26
12	Quorum Sensing Negatively Regulates Multinucleate Cell Formation during Intracellular Growth of Burkholderia pseudomallei in Macrophage-Like Cells. PLoS ONE, 2013, 8, e63394.	1.1	18
13	Interaction of Burkholderia pseudomallei and Burkholderia thailandensis with human monocyte-derived dendritic cells. Journal of Medical Microbiology, 2012, 61, 607-614.	0.7	8
14	Coupling between codon usage, translation and protein export in <i>Escherichia coli</i> . Biotechnology Journal, 2011, 6, 660-667.	1.8	21
15	A Genomic Survey of Positive Selection in Burkholderia pseudomallei Provides Insights into the Evolution of Accidental Virulence. PLoS Pathogens, 2010, 6, e1000845.	2.1	116
16	Nasalâ€Associated Lymphoid Tissue and Olfactory Epithelium as Portals of Entry forBurkholderia pseudomalleiin Murine Melioidosis. Journal of Infectious Diseases, 2009, 199, 1761-1770.	1.9	71
17	Biased codon usage in signal peptides: a role in protein export. Trends in Microbiology, 2009, 17, 146-150.	3.5	51
18	Facile construction of unmarked deletion mutants in Burkholderia pseudomallei using sacB counter-selection in sucrose-resistant and sucrose-sensitive isolates. Journal of Microbiological Methods, 2009, 76, 320-323.	0.7	54

#	Article	IF	CITATIONS
19	Evaluation of recombinant antigens for diagnosis of melioidosis. FEMS Immunology and Medical Microbiology, 2008, 54, 144-153.	2.7	18
20	Genetic Tools for Select-Agent-Compliant Manipulation of <i>Burkholderia pseudomallei</i> . Applied and Environmental Microbiology, 2008, 74, 5265-5265.	1.4	1
21	Genetic Tools for Select-Agent-Compliant Manipulation of <i>Burkholderia pseudomallei</i> . Applied and Environmental Microbiology, 2008, 74, 1064-1075.	1.4	199
22	The bacterial gene lfpA influences the potent induction of calcitonin receptor and osteoclast-related genes in Burkholderia pseudomallei-induced TRAP-positive multinucleated giant cells. Cellular Microbiology, 2007, 9, 514-531.	1.1	40
23	Temperature-Regulated Microcolony Formation by Burkholderia pseudomallei Requires pilA and Enhances Association with Cultured Human Cells. Infection and Immunity, 2006, 74, 5374-5381.	1.0	36
24	A Type IV Pilin, PilA, Contributes to Adherence of Burkholderia pseudomallei and Virulence In Vivo. Infection and Immunity, 2005, 73, 1260-1264.	1.0	92
25	Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proceedings of the United States of America, 2004, 101, 14240-14245.	3.3	675
26	Identification of a novel two-partner secretion system from Burkholderia pseudomallei. Molecular Genetics and Genomics, 2004, 272, 204-215.	1.0	12
27	Regulation of theaprX–lipAoperon ofPseudomonas fluorescensB52: differential regulation of the proximal and distal genes, encoding protease and lipase, byompR–envZ. FEMS Microbiology Letters, 2004, 241, 243-248.	0.7	29
28	Whole genome analysis reveals a high incidence of non-optimal codons in secretory signal sequences of Escherichia coli. Biochemical and Biophysical Research Communications, 2004, 322, 1038-1044.	1.0	45
29	Cobalt activation of Escherichia coli 5'-nucleotidase is due to zinc ion displacement at only one of two metal-ion-binding sites. Biochemical Journal, 2003, 372, 625-630.	1.7	28
30	Adherence of Burkholderia pseudomallei Cells to Cultured Human Epithelial Cell Lines Is Regulated by Growth Temperature. Infection and Immunity, 2002, 70, 974-980.	1.0	33
31	A strain ofPseudomonas fluorescenswith two lipase-encoding genes, one of which possibly encodes cytoplasmic lipolytic activity. Journal of Applied Microbiology, 2001, 90, 979-987.	1.4	16
32	The role of the intracellular inhibitor of periplasmic UDP-sugar hydrolase (5′-nucleotidase) inEscherichia coli: cytoplasmic localisation of 5′-nucleotidase is conditionally lethal. Journal of Basic Microbiology, 2001, 41, 329-337.	1.8	8
33	TheEscherichia coliorthologue of theSalmonella ushBgene (ushBc) produces neither UDP-sugar hydrolase activity nor detectable protein, but has an identical sequence to that ofEscherichia coli cdh. FEMS Microbiology Letters, 2001, 203, 63-68.	0.7	2
34	The aprX–lipA operon of Pseudomonas fluorescens B52: a molecular analysis of metalloprotease and lipase production The GenBank accession numbers for the sequences reported in this paper are AF216700, AF216701 and AF216702 Microbiology (United Kingdom), 2001, 147, 345-354.	0.7	80
35	The cryptic ushA gene (ushA c) in natural isolates of Salmonella enterica (serotype Typhimurium) has been inactivated by a single missense mutation The GenBank accession numbers for the sequences determined in this work are AF188721–AF188732 Microbiology (United Kingdom), 2001, 147, 1887-1896.	0.7	22
36	Cloning and analysis of genomic differences unique to Burkholderia pseudomallei by comparison with B. thailandensis. Journal of Medical Microbiology, 2000, 49, 993-1001.	0.7	32

#	Article	IF	CITATIONS
37	Temperature regulation of protease in Pseudomonas fluorescens LS107d2 by an ECF sigma factor and a transmembrane activator The GenBank accession numbers for the sequences reported in this paper are AF228766 and AF228767 Microbiology (United Kingdom), 2000, 146, 3149-3155.	0.7	49
38	Amylase and 16S rRNA genes from a hyperthermophilic archaebacterium. Journal of Applied Microbiology, 1999, 86, 93-107.	1.4	18
39	Evolution of class I alcohol dehydrogenase genes in catarrhine primates: gene conversion, substitution rates, and gene regulation. Molecular Biology and Evolution, 1999, 16, 23-36.	3.5	16
40	The diversity of lipases from psychrotrophic strains of Pseudomonas : a novel lipase from a highly lipolytic strain of Pseudomonas fluorescens. Journal of Applied Microbiology, 1998, 85, 527-536.	1.4	31
41	The effect of temperature on the degradation of triglycerides by a pseudomonad isolated from milk: free fatty acid accumulation as a balance between rates of triglyceride hydrolysis and fatty acid consumption. Journal of Applied Bacteriology, 1995, 79, 651-656.	1.1	4
42	Degradation of triglycerides by a pseudomonad isolated from milk: the roles of lipase and esterase studied using recombinant strains overâ€producing, or specifically deficient in these enzymes. Journal of Applied Bacteriology, 1995, 78, 216-223.	1.1	10
43	Human Stomach Class IV Alcohol Dehydrogenase: Molecular Genetic Analysis. Alcoholism: Clinical and Experimental Research, 1995, 19, 185-186.	1.4	2
44	Transcriptional co-activation at the ansB promoters: involvement of the activating regions of CRP and FNR when bound in tandem. Molecular Microbiology, 1995, 18, 521-531.	1.2	65
45	Silent genes in bacteria: the previously designated â€Â~cryptic'ilvHIlocus of â€Â~Salmonella typhimuriumLT2′ is active in natural isolates. FEMS Microbiology Letters, 1995, 131, 167-172.	0.7	13
46	Cloning and molecular analysis of the Salmonella enterica ansP gene, encoding an L-asparagine permease. Microbiology (United Kingdom), 1995, 141, 141-146.	0.7	16
47	Molecular Evolution of Class I Alcohol Dehydrogenases in Primates. Advances in Experimental Medicine and Biology, 1995, , 315-320.	0.8	2
48	Co-dependent positive regulation of the ansBF promoter of Escherichia coli by CRP and the FNR protein: a molecular analysis. Molecular Microbiology, 1993, 9, 155-164.	1.2	48
49	Regulation of the ansB gene of Salmonella enterica. Molecular Microbiology, 1993, 9, 165-172.	1.2	21
50	UDP-sugar hydrolase isozymes inSalmonella entericaandEscherichia coli: Silent alleles ofushAin related strains of Group ISalmonellaisolates, and ofushBin wild-type and K12 strains ofE. coli, indicate recent and early silencing events, respectively. FEMS Microbiology Letters, 1993, 114, 293-298.	0.7	21
51	Membrane localisation of a UDP-sugar hydrolase, inSalmonella, is by an uncleaved N-terminal signal peptide. FEMS Microbiology Letters, 1993, 114, 299-3047.	0.7	4
52	Bovine Corneal Aldehyde Dehydrogenases: Evidence for Multiple Gene Products (ALDH3 and ALDHX). Advances in Experimental Medicine and Biology, 1993, 328, 153-157.	0.8	8
53	Molecular analysis of an esterase-encoding gene from a lipolytic psychrotrophic pseudomonad. Journal of General Microbiology, 1992, 138, 701-708.	2.3	41
54	Site-specific mutagenesis of Escherichia coli asparaginase II. None of the three histidine residues is required for catalysis. FEBS Journal, 1992, 208, 475-480.	0.2	35

#	Article	IF	CITATIONS
55	Degradation of triglycerides by a pseudomonad isolated from milk: molecular analysis of a lipase-encoding gene and its expression in Escherichia coli. Applied and Environmental Microbiology, 1992, 58, 1776-1779.	1.4	41
56	Evidence for three genes encoding class-I alcohol dehydrogenase subunits in baboon and analysis of the 5' region of the gene encoding the ADHÎ ² subunit. Gene, 1991, 103, 211-218.	1.0	7
57	Construction of expression systems for Escherichia cofi asparaginase II and two-step purification of the recombinant enzyme from periplasmic extracts. Protein Expression and Purification, 1991, 2, 144-150.	0.6	34
58	Hypoxanthine-guanine phosphoribosyltransferase deficiency: analysis of HPRT mutations by direct sequencing and allele-specific amplification. Human Genetics, 1991, 87, 688-92.	1.8	15
59	Analysis of the Escherichia coli gene encoding L-asparaginase II, ansB, and its regulation by cyclic AMP receptor and FNR proteins. Journal of Bacteriology, 1990, 172, 1491-1498.	1.0	74
60	Identification of a single nucleotide substitution in the coding sequence ofin vitro amplified cDNA from a patient with partial HPRT deficiency (HPRTBrisbane). Journal of Inherited Metabolic Disease, 1990, 13, 692-700.	1.7	10
61	Transcription and regulation of the cpdB gene in Escherichia coli K12 and Salmonella typhimurium LT2: Evidence for modulation of constitutive promoters by cyclic AMP-CRP complex. Molecular Genetics and Genomics, 1990, 222, 161-165.	2.4	26
62	Expression of active human hypoxanthine-guanine phosphoribosyltransferase in Escherichia coli and characterisation of the recombinant enzyme. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1990, 1087, 205-211.	2.4	18
63	Isolation, molecular characterization and expression of the ushB gene of Salmonella typhimurium which encodes a membrane-bound UDP-sugar hydrolase. Molecular Microbiology, 1989, 3, 177-186.	1.2	10
64	Structure and expression in Escherichia coli K-12 of the L-asparaginase I-encoding ansA gene and its flanking regions. Gene, 1989, 78, 37-46.	1.0	46
65	Cloning and sequencing of cDNA encoding baboon liver alcohol dehydrogenase: evidence for a common ancestral lineage with the human alcohol dehydrogenase beta subunit and for class I ADH gene duplications predating primate radiation Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 5454-5458.	3.3	36
66	Characterization of Genomic DNA, mRNA and Enzyme Protein in Cases of HPRT Deficiency. Advances in Experimental Medicine and Biology, 1989, 253A, 151-154.	0.8	0
67	MacConkey agar as an alternative to Xgal in the detection of recombinant plasmids. BioTechniques, 1989, 7, 1082.	0.8	8
68	Regulation ofEscherichia colil-asparaginase II and l-aspartase by thefnrgene-product. FEMS Microbiology Letters, 1987, 41, 127-130.	0.7	16
69	Identification and sequence analysis of a silent gene (ushA0) in Salmonella typhimurium. Journal of Molecular Biology, 1986, 192, 163-175.	2.0	30
70	L-asparaginase genes in Escherichia coli: isolation of mutants and characterization of the ansA gene and its protein product. Journal of Bacteriology, 1986, 166, 135-142.	1.0	23
71	Isolation and sequence analysis of the gene (cpdB) encoding periplasmic 2',3'-cyclic phosphodiesterase. Journal of Bacteriology, 1986, 165, 1002-1010.	1.0	61
72	Nucleotide sequence and transcriptional analysis of theE. coli ushA gene, encoding periplasmic UDP-sugar hydrolase (5'-nucleotidase): regulation of theushAgene, and the signal sequence of its encoded protein product. Nucleic Acids Research, 1986, 14, 4325-4342.	6.5	78

#	Article	IF	CITATIONS
73	Rare codons inE. coliandS. typhimuriumsignal sequences. FEBS Letters, 1985, 189, 318-324.	1.3	40
74	Positive selection vectors: a small plasmid vector useful for the direct selection of Sau3A-generated overlapping DNA fragments. Gene, 1984, 27, 323-325.	1.0	23
75	The nucleotide sequence of the yeast ARG4 gene. Gene, 1984, 29, 271-279.	1.0	119
76	A method for the ligation of DNA following isolation from low melting temperature agarose. Analytical Biochemistry, 1983, 135, 48-51.	1.1	49
77	Characterisation of the ush gene of Escherichia coli and its protein products. Gene, 1983, 25, 343-353.	1.0	23
78	Studies on the UDP-sugar hydrolases from Escherichia coli and Salmonella typhimurium. Archives of Biochemistry and Biophysics, 1982, 218, 603-608.	1.4	15
79	On the receptor for bacteriophage T4 inEscherichia coli K12. Current Microbiology, 1981, 6, 291-293.	1.0	7
80	Transfer of RP4:: Mu to Salmonella typhimurium. Microbiology (United Kingdom), 1981, 124, 225-228.	0.7	4
81	Isolation of Escherichia coli Mutants (cpdB) Deficient in Periplasmic 2' :3' -Cyclic Phosphodiesterase and Genetic Mapping of the cpdB Locus. Microbiology (United Kingdom), 1980, 119, 31-34.	0.7	18
82	Molecular cloning of the gene (ush) from Escherichia coli specifying periplasmic UDP-sugar hydrolase (5'-nucleotidase). Gene, 1980, 12, 281-286.	1.0	18
83	Periplasmic enzymes in gram-negative bacteria. International Journal of Biochemistry & Cell Biology, 1979, 10, 877-883.	0.8	98
84	Nucleoside Diphosphate Sugar Hydrolase Gene of Salmonella typhimurium : Chromosomal Location Determined by Intergeneric Crosses. Journal of Bacteriology, 1979, 137, 1428-1429.	1.0	9
85	Enzyme secretion in E. coli K12: Studies on alkaline phosphatase synthesis using an unsaturated fatty-acid auxotroph. Biochemical and Biophysical Research Communications, 1978, 82, 469-476.	1.0	Ο
86	Crypticity of periplasmic enzymes Involvement of protein b in the permeability of the outer membrane of Escherichia coli. FEBS Letters, 1978, 85, 133-136.	1.3	11
87	Bacteriophage-resistant Mutants of Escherichia coli K12. Location of Receptors within the Lipopolysaccharide. Journal of General Microbiology, 1977, 102, 305-318.	2.3	50
88	The effect of translation and transcription inhibitors on the synthesis of periplasmic phosphatases in E. coli. Molecular Genetics and Genomics, 1977, 154, 67-73.	2.4	9
89	Bacteriophage-resistant Mutants of Escherichia coli K12 with Altered Lipopolysaccharide. Studies with Concanavalin A. Journal of General Microbiology, 1977, 102, 319-326.	2.3	12
90	Mutants of Escherichia coli "cryptic" for certain periplasmic enzymes: evidence for an alteration of the outer membrane. Journal of Bacteriology, 1977, 129, 1034-1044.	1.0	63

#	Article	IF	CITATIONS
91	Genetic location of the gene (ush) specifying periplasmic uridine 5'-diphosphate glucose hydrolase (5'-nucleotidase) in Escherichia coli K-12. Journal of Bacteriology, 1976, 128, 487-489.	1.0	14
92	Enzyme secretion in Escherichia coli: synthesis of alkaline phosphatase and acid hexose phosphatase in the absence of phospholipid synthesis. Journal of Bacteriology, 1976, 128, 522-527.	1.0	17
93	Synthesis of Escherichia coli Uridine Diphosphate Glucose Hydrolase, and Demonstration of an Inhibitor, in Salmonella typhimurium Cytoplasm. Biochemical Society Transactions, 1975, 3, 386-387.	1.6	0
94	The Interaction of Concanavalin A with Mutant and Wild-Type Strains of Escherichia coli K12. Biochemical Society Transactions, 1975, 3, 387-388.	1.6	5
95	Synthesis and localisation of Escherichia coli UDP-glucose hydrolase (5′-nucleotidase), and demonstration of a cytoplasmic inhibitor of this enzyme in Salmonella typhimurium. Biochimica Et Biophysica Acta - General Subjects, 1975, 411, 216-221.	1.1	11
96	Uptake of adenosine 5'-monophosphate by Escherichia coli. Journal of Bacteriology, 1975, 121, 401-405.	1.0	78
97	Studies on the Uridine Diphosphate-Galactose:Lipopolysaccharide Galactosyltransferase Reaction Using a Fatty Acid Mutant of Escherichia coli. Journal of Biological Chemistry, 1973, 248, 5310-5318.	1.6	23
98	Mutants of Escherichia coli K-12 "Cryptic,―or Deficient in 5′-Nucleotidase (Uridine Diphosphate-Sugar) Tj 957-964.	ETQq0 0 (1.0	0 rgBT /Overl 55
99	Studies on the uridine diphosphate-galactose: lipopolysaccharide galactosyltransferase reaction using a fatty acid mutant of Escherichia coli. Journal of Biological Chemistry, 1973, 248, 5310-8.	1.6	25
100	Temperature-Sensitive Mutants of Escherichia coli Requiring Saturated and Unsaturated Fatty Acids for Growth: Isolation and Properties. Proceedings of the National Academy of Sciences of the United States of America, 1972, 69, 3105-3109.	3.3	82
101	Intracellular thymidine triphosphate concentrations in wild type and in thymine requiring mutants of Escherichia coli 15 and K12. Journal of Molecular Biology, 1971, 60, 75-86.	2.0	50
102	On the localisation of enzymes of deoxynucleoside catabolism inEscherichia coli. FEBS Letters, 1971, 16, 77-80.	1.3	21
103	The role of nucleoside phosphorylases in the degradation of deoxyribonucleosides by thymine-requiring mutants of E. coli. Molecular Genetics and Genomics, 1971, 110, 289-298.	2.4	35
104	A new assay for phosphodeoxyribomutase: Surface localisation of the enzyme. Biochimica Et Biophysica Acta - Biomembranes, 1969, 191, 158-161.	1.4	13
105	Deoxynucleoside-sensitive mutants ofSalmonella typhimurium. Molecular Genetics and Genomics, 1968, 102, 112-127.	2.4	36
106	The inducer of the deoxynucleoside phosphorylases and deoxyriboaldolase in Escherichia coli. Nucleic Acids and Protein Synthesis, 1968, 161, 554-557.	1.7	59
107	Constitutivity of thymidine phosphorylase in deoxyriboaldolase negative strains: Dependence on thymine requirement and concentration. Nucleic Acids and Protein Synthesis, 1968, 166, 589-592.	1.7	24