Carlos Romero Nieto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4058384/publications.pdf

Version: 2024-02-01

55 papers

1,651 citations

236612 25 h-index 315357 38 g-index

66 all docs 66 docs citations

66 times ranked 1757 citing authors

#	Article	IF	CITATIONS
1	Soft Electronic Platforms Combining Elastomeric Stretchability and Biodegradability. Advanced Sustainable Systems, 2022, 6, 2100035.	2.7	21
2	Luminescent Pyrroleâ€based Phosphaphenalene Gold Complexes: A Versatile Anticancer Tool with a Wide Applicability. Chemistry - A European Journal, 2022, , .	1.7	5
3	Luminescent Pyrroleâ€Based Phosphaphenalene Gold Complexes: Versatile Anticancer Tools with Wide Applicability. Chemistry - A European Journal, 2022, 28, .	1.7	4
4	En Route Towards the Control of Luminescent, Opticallyâ€Active 3D Architectures. Angewandte Chemie - International Edition, 2021, 60, 766-773.	7.2	9
5	Hin zur Kontrolle lumineszenter, optischâ€aktiver 3Dâ€Architekturen. Angewandte Chemie, 2021, 133, 777-785.	1.6	4
6	Controlling the molecular arrangement of racemates through weak interactions: the synergy between π-interactions and halogen bonds. Chemical Communications, 2021, 57, 7366-7369.	2.2	5
7	Design of organophosphorus materials for organic electronics and bio-applications. Materials Today Chemistry, 2021, 22, 100604.	1.7	18
8	Synthesis of Blue-Luminescent Seven-Membered Phosphorus Heterocycles. Journal of Organic Chemistry, 2020, 85, 1247-1252.	1.7	18
9	Extraction of $2\hat{a}\in^2$ -O-apiosyl-6 $\hat{a}\in^2$ -O-crotonic acid-betanin from the ayrampo seed (Opuntia soehrensii) cuticle and its use as an emitting layer in an organic light-emitting diode. RSC Advances, 2020, 10, 36695-36703.	1.7	1
10	Gold(<scp>i</scp>) complexes based on six-membered phosphorus heterocycles as bio-active molecules against brain cancer. Chemical Communications, 2020, 56, 14593-14596.	2.2	6
11	Photoresponsive organophosphorus materials based on six- and seven-membered phosphorus heterocycles. Photochemistry, 2020, , 376-410.	0.2	2
12	Phosphorus Postâ€Functionalization of Diphosphahexaarenes. Chemistry - A European Journal, 2019, 25, 13146-13151.	1.7	12
13	Organophosphorus-B(C ₆ F ₅) ₃ adducts: towards new solid-state emitting materials. Dalton Transactions, 2019, 48, 12803-12807.	1.6	13
14	Modulation of waveguide behaviour of an ICT 2H-Benzo $[d][1,2,3]$ Triazole derivative with graphene. Organic Electronics, 2019, 68, 1-8.	1.4	5
15	Inkjet-printed polymer-based electrochromic and electrofluorochromic dual-mode displays. Journal of Materials Chemistry C, 2019, 7, 7121-7127.	2.7	48
16	Dismantling the Hyperconjugation of Ï€â€Conjugated Phosphorus Heterocycles. Chemistry - A European Journal, 2019, 25, 9035-9044.	1.7	22
17	Lighting with organophosphorus materials: solution-processed blue/cyan light-emitting devices based on phosphaphenalenes. Dalton Transactions, 2019, 48, 7503-7508.	1.6	19
18	Intramolecular Phosphacyclization: Polyaromatic Phosphonium Pâ∈Heterocycles with Wideâ∈Tuning Optical Properties. Chemistry - A European Journal, 2019, 25, 6332-6341.	1.7	38

#	Article	IF	Citations
19	From Phosphaphenalenes to Diphosphahexaarenes: An Overview of Linearly Fused Sixâ€Membered Phosphorus Heterocycles. European Journal of Inorganic Chemistry, 2019, 2019, 1519-1528.	1.0	27
20	Diphosphahexaarenes as Highly Fluorescent and Stable Materials. Angewandte Chemie - International Edition, 2018, 57, 15157-15161.	7.2	29
21	Diphosphahexaarenes as Highly Fluorescent and Stable Materials. Angewandte Chemie, 2018, 130, 15377-15381.	1.6	14
22	Highlights on π-systems based on six-membered phosphorus heterocycles. Dalton Transactions, 2018, 47, 10344-10359.	1.6	59
23	A Guide for the Design of Functional Polyaromatic Organophosphorus Materials. Chemistry - A European Journal, 2017, 23, 13919-13928.	1.7	41
24	Intramolecular S _E Ar Reactions of Phosphorus Compounds: Computational Approach to the Synthesis of Ï€â€Extended Heterocycles. Chemistry - A European Journal, 2017, 23, 17487-17496.	1.7	14
25	Frontispiece: Intramolecular S _E Ar Reactions of Phosphorus Compounds: Computational Approach to the Synthesis of Ï€â€Extended Heterocycles. Chemistry - A European Journal, 2017, 23, .	1.7	0
26	Electrical and optical properties of reduced graphene oxide thin film deposited onto polyethylene terephthalate by spin coating technique. Applied Optics, 2017, 56, 7774.	0.9	14
27	B(C ₆ F ₅) ₃ : A Lewis Acid that Brings the Light to the Solid State. Angewandte Chemie - International Edition, 2016, 55, 1196-1199.	7.2	52
28	Phosphaphenalenes: An Evolution of the Phosphorus Heterocycles. Synlett, 2016, 27, 2293-2300.	1.0	34
29	Quaternized Pyridyloxy Phthalocyanines Render Aqueous Electronâ€Donor Carbon Nanotubes as Unprecedented Supramolecular Materials for Energy Conversion. Advanced Functional Materials, 2015, 25, 7418-7427.	7.8	16
30	Paving the Way to Novel Phosphorusâ€Based Architectures: Aâ€Noncatalyzed Protocol to Access Sixâ€Membered Heterocycles. Angewandte Chemie - International Edition, 2015, 54, 15872-15875.	7.2	80
31	Electroactive carbon nanoforms: a comparative study via sequential arylation and click chemistry reactions. Nanoscale, 2015, 7, 1193-1200.	2.8	26
32	Ruthenoarenes versus Phenol Derivatives as Axial Linkers for Subporphyrazine Dimers and Trimers. Chemistry - A European Journal, 2014, 20, 6518-6525.	1.7	15
33	Controlling the crystalline three-dimensional order in bulk materials by single-wall carbon nanotubes. Nature Communications, 2014, 5, 3763.	5 . 8	28
34	Charge transfer interactions in self-assembled single walled carbon nanotubes/Dawson–Wells polyoxometalate hybrids. Chemical Science, 2014, 5, 4346-4354.	3.7	49
35	Stable Electron Donor–Acceptor Nanohybrids by Interfacing <i>nâ€</i> Type TCAQ with <i>pâ€</i> Type Singleâ€Walled Carbon Nanotubes. Angewandte Chemie - International Edition, 2013, 52, 10216-10220.	7.2	32
36	Low dimensional nanocarbons – chemistry and energy/electron transfer reactions. Chemical Science, 2013, 4, 4335.	3.7	102

#	Article	IF	CITATIONS
37	Host–Guest Complexation of [60]Fullerenes and Porphyrins Enabled by "Click Chemistry― Chemistry - A European Journal, 2013, 19, 11374-11381.	1.7	28
38	Selfâ€Ordering Electron Donor–Acceptor Nanohybrids Based on Singleâ€Walled Carbon Nanotubes Across Different Scales. Angewandte Chemie - International Edition, 2013, 52, 2180-2184.	7.2	41
39	Dithieno[3,2-b:2′,3′-d]phospholes: A Look Back at the First Decade. Synlett, 2013, 24, 920-937.	1.0	72
40	Stable Electron Donor–Acceptor Nanohybrids by Interfacing <i>nâ€</i> Type TCAQ with <i>pâ€</i> Type Singleâ€Walled Carbon Nanotubes. Angewandte Chemie, 2013, 125, 10406-10410.	1.6	8
41	Cyclopentadienylruthenium Ï€â€Complexes of Subphthalocyanines: A "Dropâ€Pin―Approach To Modifying the Electronic Features of Aromatic Macrocycles. Angewandte Chemie - International Edition, 2012, 51, 11337-11342.	7.2	45
42	Tetrathiafulvalene-Based Nanotweezers—Noncovalent Binding of Carbon Nanotubes in Aqueous Media with Charge Transfer Implications. Journal of the American Chemical Society, 2012, 134, 9183-9192.	6.6	76
43	Towards enhancing light harvesting—subphthalocyanines as electron acceptors. Chemical Communications, 2012, 48, 4953.	2.2	25
44	Ultrafast Photoinduced Processes in Subphthalocyanine Electron Donor–Acceptor Conjugates Linked by a Single B–N Bond. Organic Letters, 2012, 14, 5656-5659.	2.4	23
45	Concave versus Planar Geometries for the Hierarchical Organization of Mesoscopic 3D Helical Fibers. Angewandte Chemie - International Edition, 2012, 51, 3857-3861.	7.2	19
46	Interfacing Nanocarbons with Organic and Inorganic Semiconductors: From Nanocrystals/Quantum Dots to Extended Tetrathiafulvalenes. Langmuir, 2012, 28, 11662-11675.	1.6	18
47	Integrating Waterâ€Soluble Graphene into Porphyrin Nanohybrids. Advanced Materials, 2012, 24, 800-805.	11.1	43
48	Electrochemical synthesis and spectroelectrochemical characterization of triazole/thiophene conjugated polymers. Electrochimica Acta, 2011, 58, 215-222.	2.6	10
49	Subphthalocyanine-polymethine cyanine conjugate: an all organic panchromatic light harvester that reveals charge transfer. Journal of Materials Chemistry, 2011, 21, 15914.	6.7	37
50	Room Temperature Multifunctional Organophosphorus Gels and Liquid Crystals. Advanced Functional Materials, 2011, 21, 4088-4099.	7.8	42
51	Synthesis and Photophysical Properties of Donor–Acceptor Dithienophospholes. European Journal of Organic Chemistry, 2010, 2010, 5225-5231.	1.2	25
52	Highly luminescent terpyridinyl-ethynyl functionalized dithieno[3,2-b:2′,3′-d]phospholes: synthesis, properties and complexation behavior. Dalton Transactions, 2010, 39, 1250-1260.	1.6	19
53	Simple and Efficient Generation of White Light Emission From Organophosphorus Building Blocks. Advanced Functional Materials, 2009, 19, 3625-3631.	7.8	89
54	Dendrimeric Oligo(phenylenevinylene)â€Extended Dithieno[3,2â€∢i>b⟨ i>:2′,3′â€∢i>d⟨ i>]phospholes—Synthesis, Selfâ€Organization, and Optical Properties Chemistry - A European Journal, 2009, 15, 4135-4145.	s1.7	59

#	Article	IF	CITATIONS
55	Control of Surface Functionality in Poly(phenylenevinylene) Dendritic Architectures. Journal of Organic Chemistry, 2007, 72, 3847-3852.	1.7	9