
Gregory D Funk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/405821/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prenatal fluoxetine has long-lasting, differential effects on respiratory control in male and female rats. Journal of Applied Physiology, 2022, 133, 371-389.	2.5	3
2	Mapping of the excitatory, inhibitory, and modulatory afferent projections to the anatomically defined active expiratory oscillator in adult male rats. Journal of Comparative Neurology, 2021, 529, 853-884.	1.6	19
3	A brainstem peptide system activated at birth protects postnatal breathing. Nature, 2021, 589, 426-430.	27.8	31
4	KCNQ Current Contributes to Inspiratory Burst Termination in the Pre-Bötzinger Complex of Neonatal Rats in vitro. Frontiers in Physiology, 2021, 12, 626470.	2.8	8
5	Release your inhibitions: The role of postâ€inhibitory rebound and synaptic inhibition in the generation of expiratory activity. Journal of Physiology, 2021, 599, 5331-5332.	2.9	1
6	Commentary: Acute perturbation of Pet1-neuron activity in neonatal mice impairs cardiorespiratory homeostatic recovery. Frontiers in Physiology, 2019, 10, 232.	2.8	0
7	Respiratory motoneuron properties during the transition from gill to lung breathing in the American bullfrog. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 316, R281-R297.	1.8	4
8	Postnatal development of persistent inward currents in rat XII motoneurons and their modulation by serotonin, muscarine and noradrenaline. Journal of Physiology, 2019, 597, 3183-3201.	2.9	12
9	The Purinome and the preBötzinger Complex – A Ménage of Unexplored Mechanisms That May Modulate/Shape the Hypoxic Ventilatory Response. Frontiers in Cellular Neuroscience, 2019, 13, 365.	3.7	8
10	Developmental Changes in the Role of Adenosine Clearance Mechanisms in Modulating the Activity of the preBötzinger Complex Inspiratory Network Under Basal and Hypoxic Conditions. FASEB Journal, 2019, 33, 546.1.	0.5	0
11	Release of ATP by preâ€Bötzinger complex astrocytes contributes to the hypoxic ventilatory response via a Ca ²⁺ â€dependent P2Y ₁ receptor mechanism. Journal of Physiology, 2018, 596, 3245-3269.	2.9	82
12	Rebuttal from Gregory D. Funk and Alexander V. Gourine. Journal of Physiology, 2018, 596, 2943-2944.	2.9	4
13	CrossTalk proposal: a central hypoxia sensor contributes to the excitatory hypoxic ventilatory response. Journal of Physiology, 2018, 596, 2935-2938.	2.9	16
14	Breathing matters. Nature Reviews Neuroscience, 2018, 19, 351-367.	10.2	446
15	On the existence of a central respiratory oxygen sensor. Journal of Applied Physiology, 2017, 123, 1344-1349.	2.5	78
16	Phylogenetically persistent purinergic modulation of central pattern generators for breathing in lamprey and mammals. Journal of Physiology, 2017, 595, 7011-7012.	2.9	2
17	Excitatory Modulation of the preBötzinger Complex Inspiratory Rhythm Generating Network by Endogenous Hydrogen Sulfide. Frontiers in Physiology, 2017, 8, 452.	2.8	12
18	The role of P2Y1 receptor signaling in central respiratory control. Respiratory Physiology and Neurobiology, 2016, 226, 3-10.	1.6	11

#	Article	IF	CITATIONS
19	Dbx1 precursor cells are a source of inspiratory XII premotoneurons. ELife, 2015, 4, .	6.0	50
20	Neuroglia and their roles in central respiratory control; an overview. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2015, 186, 83-95.	1.8	34
21	Functional Oxygen Sensitivity of Astrocytes. Journal of Neuroscience, 2015, 35, 10460-10473.	3.6	219
22	Glial TLR4 signaling does not contribute to opioid-induced depression of respiration. Journal of Applied Physiology, 2014, 117, 857-868.	2.5	12
23	P2Y ₁ receptorâ€mediated potentiation of inspiratory motor output in neonatal rat <i>in vitro</i> . Journal of Physiology, 2014, 592, 3089-3111.	2.9	15
24	Laser ablation of Dbx1 neurons in the pre-Bötzinger complex stops inspiratory rhythm and impairs output in neonatal mice. ELife, 2014, 3, e03427.	6.0	82
25	Breathing and brain state: Urethane anesthesia as a model for natural sleep. Respiratory Physiology and Neurobiology, 2013, 188, 324-332.	1.6	53
26	The rhythmic, transverse medullary slice preparation in respiratory neurobiology: Contributions and caveats. Respiratory Physiology and Neurobiology, 2013, 186, 236-253.	1.6	58
27	Neuromodulation: Purinergic Signaling in Respiratory Control. , 2013, 3, 331-363.		23
28	l think <i>I</i> _{CAN} : modulation of TRPM4 channels may contribute not only to the emergence of rhythm, but robust output and metabolic sensitivity of the preBA¶tzinger Complex inspiratory network. Journal of Physiology, 2013, 591, 1593-1594.	2.9	6
29	The Sagittally Sectioned Rat Hindbrain Preparation: Improved Access to the Brainstem Respiratory Network. Neuromethods, 2013, , 257-268.	0.3	1
30	ATP acts via P2Y1 receptors in the preBötzinger Complex in vivo to attenuate the secondary hypoxic respiratory depression. FASEB Journal, 2013, 27, 1137.16.	0.5	0
31	State-Dependent Modulation of Breathing in Urethane-Anesthetized Rats. Journal of Neuroscience, 2012, 32, 11259-11270.	3.6	74
32	Muscarinic acetylcholine receptors enhance neonatal mouse hypoglossal motoneuron excitability in vitro. Journal of Applied Physiology, 2012, 113, 1024-1039.	2.5	32
33	Anxiety-Related Mechanisms of Respiratory Dysfunction in a Mouse Model of Rett Syndrome. Journal of Neuroscience, 2012, 32, 17230-17240.	3.6	40
34	Signaling pathways underlying the P2Y 1 receptorâ€mediated excitation of the preBötzinger Complex (preBötC) inspiratory rhythm generating network in vitro. FASEB Journal, 2012, 26, 1088.7.	0.5	0
35	Microglia attenuate the opioidâ€induced depression of preBötzinger Complex (preBötC) inspiratory rhythm in vitro via a TLR4â€independent pathway. FASEB Journal, 2012, 26, 1088.8.	0.5	1
36	Purinergic modulation of preBötzinger complex inspiratory rhythm in rodents: the interaction between ATP and adenosine. Journal of Physiology, 2011, 589, 4583-4600.	2.9	42

#	Article	IF	CITATIONS
37	Noradrenergic modulation of hypoglossal motoneuron excitability: developmental and putative state-dependent mechanisms. Archives Italiennes De Biologie, 2011, 149, 426-53.	0.4	28
38	Substance P Modulation of Hypoglossal Motoneuron Excitability During Development: Changing Balance Between Conductances. Journal of Neurophysiology, 2010, 104, 854-872.	1.8	10
39	The â€~connexin' between astrocytes, ATP and central respiratory chemoreception. Journal of Physiology, 2010, 588, 4335-4337.	2.9	21
40	Opiate-Induced Suppression of Rat Hypoglossal Motoneuron Activity and Its Reversal by Ampakine Therapy. PLoS ONE, 2010, 5, e8766.	2.5	54
41	Glia Contribute to the Purinergic Modulation of Inspiratory Rhythm-Generating Networks. Journal of Neuroscience, 2010, 30, 3947-3958.	3.6	92
42	Tripartite Purinergic Modulation of Central Respiratory Networks during Perinatal Development: The Influence of ATP, Ectonucleotidases, and ATP Metabolites. Journal of Neuroscience, 2009, 29, 14713-14725.	3.6	47
43	Losing sleep over the caffeination of prematurity. Journal of Physiology, 2009, 587, 5299-5300.	2.9	6
44	Ampakine CX717 Protects against Fentanyl-induced Respiratory Depression and Lethal Apnea in Rats. Anesthesiology, 2009, 110, 1364-1370.	2.5	102
45	Glial contribution to the modulation of preBötzinger Complex rhythm generating networks by ATP. FASEB Journal, 2009, 23, .	0.5	0
46	ATP sensitivity of preBötzinger complex neurones in neonatal rat <i>in vitro</i> : mechanism underlying a P2 receptorâ€mediated increase in inspiratory frequency. Journal of Physiology, 2008, 586, 1429-1446.	2.9	41
47	Distinct receptors underlie glutamatergic signalling in inspiratory rhythmâ€generating networks and motor output pathways in neonatal rat. Journal of Physiology, 2008, 586, 2357-2370.	2.9	11
48	ATP in central respiratory control: A three-part signaling system. Respiratory Physiology and Neurobiology, 2008, 164, 131-142.	1.6	30
49	Generation of Eupnea and Sighs by a Spatiochemically Organized Inspiratory Network. Journal of Neuroscience, 2008, 28, 2447-2458.	3.6	107
50	Are All Motoneurons Created Equal in the Eyes of REM Sleep and the Mechanisms of Muscle Atonia?. Sleep, 2008, 31, 1479-1482.	1.1	15
51	P2Y1 Receptor Modulation of the Pre-Botzinger Complex Inspiratory Rhythm Generating Network In Vitro. Journal of Neuroscience, 2007, 27, 993-1005.	3.6	72
52	Differential expression of group I metabotropic glutamate receptors in human motoneurons at low and high risk of degeneration in amyotrophic lateral sclerosis. Neuroscience, 2006, 143, 95-104.	2.3	9
53	The parafacial respiratory group (pFRG)/pre-Botzinger complex (preBotC) is the primary site of respiratory rhythm generation in the mammal. Journal of Applied Physiology, 2006, 100, 2103-2108.	2.5	14
54	Preparing for the first breath: prenatal maturation of respiratory neural control. Journal of Physiology, 2006, 570, 437-444.	2.9	85

#	Article	IF	CITATIONS
55	Ampakines Alleviate Respiratory Depression in Rats. American Journal of Respiratory and Critical Care Medicine, 2006, 174, 1384-1391.	5.6	97
56	High Sensitivity to Neuromodulator-Activated Signaling Pathways at Physiological [K+] of Confocally Imaged Respiratory Center Neurons in On-Line-Calibrated Newborn Rat Brainstem Slices. Journal of Neuroscience, 2006, 26, 11870-11880.	3.6	140
57	Developmental downregulation of P2X3receptors in motoneurons of the compact formation of the nucleus ambiguus. European Journal of Neuroscience, 2005, 22, 809-824.	2.6	19
58	Noradrenergic modulation of XII motoneuron inspiratory activity does not involve α2-receptor inhibition of the Ih current or presynaptic glutamate release. Journal of Applied Physiology, 2005, 98, 1297-1308.	2.5	19
59	Fluorescent Tagging of Rhythmically Active Respiratory Neurons within the Pre-Botzinger Complex of Rat Medullary Slice Preparations. Journal of Neuroscience, 2005, 25, 2591-2596.	3.6	46
60	Perinatal development of respiratory motoneurons. Respiratory Physiology and Neurobiology, 2005, 149, 43-61.	1.6	35
61	Differential expression of voltage-activated calcium channels in III and XII motoneurones during development in the rat. European Journal of Neuroscience, 2004, 20, 903-913.	2.6	17
62	Effects of muscarinic acetylcholine receptor activation on membrane currents and intracellular messengers in medium spiny neurones of the rat striatum. European Journal of Neuroscience, 2004, 20, 1219-1230.	2.6	25
63	P2 receptors modulate respiratory rhythm but do not contribute to central CO2 sensitivity in vitro. Respiratory Physiology and Neurobiology, 2004, 142, 27-42.	1.6	31
64	Receptor subtype-specific modulation by dopamine of glutamatergic responses in striatal medium spiny neurons. Brain Research, 2003, 959, 251-262.	2.2	31
65	Oscillations in Endogenous Inputs to Neurons Affect Excitability and Signal Processing. Journal of Neuroscience, 2003, 23, 8152-8158.	3.6	47
66	Modulation of phrenic motoneuron excitability by ATP: consequences for respiratory-related output in vitro. Journal of Applied Physiology, 2002, 92, 1899-1910.	2.5	29
67	High frequency oscillations in respiratory networks: functionally significant or phenomenological?. Respiratory Physiology and Neurobiology, 2002, 131, 101-120.	1.6	41
68	Prenatal nicotine exposure increases apnoea and reduces nicotinic potentiation of hypoglossal inspiratory output in mice. Journal of Physiology, 2002, 538, 957-973.	2.9	77
69	GluR2 AMPA Receptor Subunit Expression in Motoneurons at Low and High Risk for Degeneration in Amyotrophic Lateral Sclerosis. Experimental Neurology, 2001, 169, 461-471.	4.1	45
70	Differential expression of Group I metabotropic glutamate receptors in motoneurons at low and high risk for degeneration in ALS. NeuroReport, 2001, 12, 1903-1908.	1.2	31
71	Modulation of hypoglossal motoneuron excitability by NK1 receptor activation in neonatal micein vitro. Journal of Physiology, 2001, 534, 447-464.	2.9	37
72	Calcium binding proteins in motoneurons at low and high risk for degeneration in ALS. NeuroReport, 2000, 11, 3305-3308.	1.2	34

#	Article	IF	CITATIONS
73	Cholinergic Modulation Of Respiratory Brain-Stem Neurons And Its Function In Sleep-Wake State Determination. Clinical and Experimental Pharmacology and Physiology, 2000, 27, 132-137.	1.9	41
74	A method for activating neurons using endogenous synaptic waveforms. Journal of Neuroscience Methods, 2000, 96, 77-85.	2.5	7
75	Synaptic Control of Motoneuronal Excitability. Physiological Reviews, 2000, 80, 767-852.	28.8	527
76	Development of the ventilatory response to hypoxia in Swiss CD-1 mice. Journal of Applied Physiology, 2000, 88, 1907-1914.	2.5	31
77	Developmental modulation of mouse hypoglossal nerve inspiratory output in vitro by noradrenergic receptor agonists. Brain Research, 1998, 805, 104-115.	2.2	34
78	Developmental modulation of glutamatergic inspiratory drive to hypoglossal motoneurons. Respiration Physiology, 1997, 110, 125-137.	2.7	30
79	Functional Respiratory Rhythm Generating Networks in Neonatal Mice Lacking NMDAR1 Gene. Journal of Neurophysiology, 1997, 78, 1414-1420.	1.8	78
80	P2 Receptor Excitation of Rodent Hypoglossal Motoneuron Activity <i>In Vitro</i> and <i>In Vivo</i> : A Molecular Physiological Analysis. Journal of Neuroscience, 1997, 17, 6325-6337.	3.6	60
81	Rhythmical Oral-Motor Activity Recorded in an In Vitro Brainstem Preparation. Somatosensory & Motor Research, 1996, 13, 39-48.	0.9	74
82	Generation of respiratory rhythm and pattern in mammals: insights from developmental studies. Current Opinion in Neurobiology, 1995, 5, 778-785.	4.2	78
83	Pacemaker behavior of respiratory neurons in medullary slices from neonatal rat. Journal of Neurophysiology, 1994, 72, 2598-2608.	1.8	176
84	Development of thyrotropin-releasing hormone and norepinephrine potentiation of inspiratory-related hypoglossal motoneuron discharge in neonatal and juvenile mice in vitro. Journal of Neurophysiology, 1994, 72, 2538-2541.	1.8	104
85	Locomotor activities in the decerebrate bird without phasic afferent input. Neuroscience, 1991, 40, 257-266.	2.3	16
86	Avian locomotion activated by brainstem infusion of neurotransmitter agonists and antagonists. Experimental Brain Research, 1991, 85, 659-673.	1.5	35
87	Role of the Telencephalon in the Synchronization of Locomotor and Respiratory Frequencies During Walking in Canada Geese. Journal of Experimental Biology, 1989, 145, 283-301.	1.7	13
88	Effects of Changes in Locomotor Intensity, Hypoxia and Hypercapnia on Locomotorrespiratory Synchrony During Walking/Running in Canada Geese. Journal of Experimental Biology, 1989, 147, 343-360.	1.7	6
89	Changes in ventilation and breathing pattern produced by changing body temperature and inspired CO2 concentration in turtles. Respiration Physiology, 1987, 67, 37-51.	2.7	31