## Tzonka Godjevargova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4057929/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Magnetic Nanoparticle Based Immunofluorescence Assay for the Determination of Aflatoxin B1.<br>Journal of Analytical Chemistry, 2021, 76, 80-88.                                                                                                              | 0.9 | 0         |
| 2  | Fluorescent Immunoassay for Determination of Staphylococcal Enterotoxin A in Milk by Immobilized<br>F(ab')2 Fragment of Anti-enterotoxin A Monoclonal Antibody. Food Analytical Methods, 2021, 14,<br>1885-1894.                                              | 2.6 | 1         |
| 3  | Simultaneous determination of ochratoxin A and enterotoxin A in milk by magnetic nanoparticles<br>based fluorescent immunoassay. Food Additives and Contaminants - Part A Chemistry, Analysis,<br>Control, Exposure and Risk Assessment, 2021, 38, 1218-1236. | 2.3 | 5         |
| 4  | Simultaneous enumeration of CD34+ and CD45+ cells using EasyCounter image cytometer. Analytical Biochemistry, 2021, 632, 114351.                                                                                                                              | 2.4 | 1         |
| 5  | CD34+ stem cell counting using labeled immobilized anti-CD34 antibody onto magnetic nanoparticles and EasyCounter BC image cytometer. Analytical Biochemistry, 2020, 610, 113929.                                                                             | 2.4 | 4         |
| 6  | Magnetic Nanoparticle-Based Fluorescence Immunoassay for Determination of Ochratoxin A in Milk.<br>Food Analytical Methods, 2020, 13, 2238-2248.                                                                                                              | 2.6 | 7         |
| 7  | Simultaneous Determination of Penicillin G and Chloramphenicol in Milk by a Magnetic<br>Nanoparticle-Based Fluorescent Immunoassay. Open Biotechnology Journal, 2020, 14, 59-69.                                                                              | 1.2 | 2         |
| 8  | Aflatoxin B1 Determination in Peanuts by Magnetic Nanoparticle–Based Immunofluorescence Assay.<br>Food Analytical Methods, 2019, 12, 1456-1465.                                                                                                               | 2.6 | 6         |
| 9  | Brewing yeast viability measured using a novel fluorescent dye and image cytometer. Biotechnology and Biotechnological Equipment, 2019, 33, 548-558.                                                                                                          | 1.3 | 11        |
| 10 | Rapid immunofluorescence assay for staphylococcal enterotoxin A using magnetic nanoparticles.<br>International Journal of Food Science and Technology, 2019, 54, 916-922.                                                                                     | 2.7 | 12        |
| 11 | Immunofluorescence Assay Using Monoclonal and Polyclonal Antibodies for Detection of Staphylococcal Enterotoxins A in Milk. Open Biotechnology Journal, 2019, 13, 137-145.                                                                                    | 1.2 | 5         |
| 12 | Comparison between direct and indirect immunofluorescence method for determination of somatic cell count. Chemical Papers, 2018, 72, 1861-1867.                                                                                                               | 2.2 | 7         |
| 13 | Magnetic nanoparticleâ€based fluorescent immunoassay for determination of progesterone in milk.<br>International Journal of Dairy Technology, 2018, 71, 309-320.                                                                                              | 2.8 | 6         |
| 14 | Magnetic-nanoparticles-based fluorescent immunoassay for individual and simultaneous<br>determination of dichlorvos and paraoxon in milk. Food and Agricultural Immunology, 2018, 29,<br>228-243.                                                             | 1.4 | 6         |
| 15 | Influence of different nanoparticles on electrochemical behavior of glucose biosensor. AIP<br>Conference Proceedings, 2017, , .                                                                                                                               | 0.4 | 2         |
| 16 | Determination of Aflatoxin M1 in Milk by a Magnetic Nanoparticle-Based Fluorescent Immunoassay.<br>Analytical Letters, 2017, 50, 452-469.                                                                                                                     | 1.8 | 11        |
| 17 | Enzyme-linked immunosorbent assay for determination of aflatoxin M1 based on magnetic nanoparticles. AIP Conference Proceedings, 2017, , .                                                                                                                    | 0.4 | 0         |
| 18 | Multiplex fluorescent immunoassay device based on magnetic nanoparticles. AIP Conference<br>Proceedings, 2017, , .                                                                                                                                            | 0.4 | 0         |

Tzonka Godjevargova

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Immunofluorescence microscope assay of neutrophils and somatic cells in bovine milk. Food and Agricultural Immunology, 2017, 28, 1196-1210.                                                                                    | 1.4 | 10        |
| 20 | Preparation of Polyclonal Antibodies with Application for an Organophosphorus Pesticide<br>Immunoassay. Analytical Letters, 2017, 50, 1307-1324.                                                                               | 1.8 | 7         |
| 21 | Hydrolysis of whey lactose by immobilized β-galactosidase in a bioreactor with a spirally wound membrane. International Journal of Biological Macromolecules, 2016, 82, 339-346.                                               | 7.5 | 35        |
| 22 | Sensitive Progesterone Determination Using a Magnetic Particle-Based Enzyme-Linked Immunosorbent<br>Assay. Analytical Letters, 2015, 48, 843-860.                                                                              | 1.8 | 12        |
| 23 | Evaluation of Immobilization Techniques for the Fabrication of Nanomaterial-Based Amperometric Glucose Biosensors. Analytical Letters, 2015, 48, 1297-1310.                                                                    | 1.8 | 6         |
| 24 | Fluorescent immunoassay for determination of penicillin and sulphonamide residues in milk using carboxylic magnetic nanoparticles. International Journal of Dairy Technology, 2014, 67, 521-529.                               | 2.8 | 4         |
| 25 | Screening and production of a potent extracellular <i>Arthrobacter creatinolyticus</i> urease for determination of heavy metal ions. Journal of Basic Microbiology, 2014, 54, 285-295.                                         | 3.3 | 10        |
| 26 | Self-assembly of acetylcholinesterase on gold nanoparticles electrodeposited on graphite. Open<br>Chemistry, 2013, 11, 1740-1748.                                                                                              | 1.9 | 6         |
| 27 | Biodegradation of Phenol and Phenolic Derivatives by a Mixture of Immobilized Cells of <i>Aspergillus<br/>Awamori</i> and <i>Trichosporon Cutaneum</i> . Biotechnology and Biotechnological Equipment, 2013,<br>27, 3681-3688. | 1.3 | 14        |
| 28 | Influence of different nanozeolite particles on the sensitivity of a glucose biosensor. Analytical<br>Biochemistry, 2013, 439, 65-72.                                                                                          | 2.4 | 17        |
| 29 | Immunofluorescent Analysis with Magnetic Nanoparticles for Simultaneous Determination of Antibiotic Residues in Milk. Analytical Letters, 2013, 46, 1537-1552.                                                                 | 1.8 | 20        |
| 30 | Urea Amperometric Biosensors Based on Nanostructured Polypyrrole and Poly<br>Ortho-Phenylenediamine. Open Journal of Applied Biosensor, 2013, 02, 12-19.                                                                       | 1.6 | 13        |
| 31 | Flow-Injection System with Site-Specific Immobilization of Acetylcholinesterase Biosensor for<br>Amperometric Detection of Organophosphate Pesticides. Biotechnology and Biotechnological<br>Equipment, 2012, 26, 3044-3053.   | 1.3 | 9         |
| 32 | Immobilization of Î <sup>2</sup> -galactosidase on modified polypropilene membranes. International Journal of<br>Biological Macromolecules, 2012, 51, 710-719.                                                                 | 7.5 | 18        |
| 33 | Immobilization of urease on nanostructured polymer membrane and preparation of urea amperometric biosensor. International Journal of Biological Macromolecules, 2011, 48, 620-626.                                             | 7.5 | 42        |
| 34 | Amperometric inhibition-based detection of organophosphorus pesticides in unary and binary mixtures employing flow-injection analysis. Sensors and Actuators B: Chemical, 2011, 160, 1098-1105.                                | 7.8 | 19        |
| 35 | Influence of Cu2+on the Amino Acids Profile ofSaccharomyces cerevisiaeRD1 during Growth.<br>Bioremediation Journal, 2011, 15, 35-38.                                                                                           | 2.0 | 0         |
| 36 | New amperometric glucose biosensor based on cross-linking of glucose oxidase on silica<br>gel/multiwalled carbon nanotubes/polyacrylonitrile nanocomposite film. Sensors and Actuators B:<br>Chemical, 2010, 148, 59-65.       | 7.8 | 61        |

| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Amperometric acetylthiocholine sensor based on acetylcholinesterase immobilized on<br>nanostructured polymer membrane containing gold nanoparticles. Journal of Molecular Catalysis B:<br>Enzymatic, 2010, 62, 66-74.                                            | 1.8 | 45        |
| 38 | Amperometric biosensor based on a site-specific immobilization of acetylcholinesterase via affinity<br>bonds on a nanostructured polymer membrane with integrated multiwall carbon nanotubes. Journal<br>of Molecular Catalysis B: Enzymatic, 2010, 63, 141-148. | 1.8 | 53        |
| 39 | Electrospun Polyacrylonitrile Nanofibrous Membranes Tailored for Acetylcholinesterase<br>Immobilization. Journal of Bioactive and Compatible Polymers, 2010, 25, 40-57.                                                                                          | 2.1 | 26        |
| 40 | Optimum immobilization of urease on modified acrylonitrile copolymer membranes: Inactivation by heavy metal ions. Journal of Molecular Catalysis B: Enzymatic, 2009, 60, 69-75.                                                                                  | 1.8 | 17        |
| 41 | Application of immobilized horseradish peroxidase onto modified acrylonitrile copolymer membrane<br>in removing of phenol from water. International Journal of Biological Macromolecules, 2009, 44,<br>190-194.                                                  | 7.5 | 52        |
| 42 | Immobilization of acetylcholinesterase on nanostructure polyacrylonitrile membranes. International<br>Journal of Biological Macromolecules, 2009, 44, 338-345.                                                                                                   | 7.5 | 23        |
| 43 | Immobilization of acetylcholinesterase on new modified acrylonitrile copolymer membranes. Journal of Molecular Catalysis B: Enzymatic, 2008, 55, 169-176.                                                                                                        | 1.8 | 21        |
| 44 | The influence of the support nature on the kinetics parameters, inhibition constants and reactivation of immobilized acetylcholinesterase. International Journal of Biological Macromolecules, 2008, 43, 339-345.                                                | 7.5 | 37        |
| 45 | Poly(acrylonitrile)chitosan composite membranes for urease immobilization. Journal of<br>Biotechnology, 2007, 129, 674-680.                                                                                                                                      | 3.8 | 39        |
| 46 | Pore diffusion studies with immobilized glucose oxidase plus catalase membranes. Enzyme and<br>Microbial Technology, 2006, 39, 1313-1318.                                                                                                                        | 3.2 | 18        |
| 47 | Immobilization of glucose oxidase by acrylonitrile copolymer coated silica supports. Journal of<br>Molecular Catalysis B: Enzymatic, 2006, 38, 59-64.                                                                                                            | 1.8 | 22        |
| 48 | Polyacrylonitrile Enzyme Ultrafiltration and Polyamide Enzyme Microfiltration Membranes Prepared by Diffusion and Convection. Macromolecular Bioscience, 2005, 5, 222-228.                                                                                       | 4.1 | 13        |
| 49 | Kinetic Parameters of Urease Immobilized on Modified Acrylonitrile Copolymer Membranes in the<br>Presence and Absence of Cu(II) Ions. Macromolecular Bioscience, 2005, 5, 459-466.                                                                               | 4.1 | 20        |
| 50 | Covalent Immobilization of Glucose Oxidase onto New Modified Acrylonitrile Copolymer/Silica Gel<br>Hybrid Supports. Macromolecular Bioscience, 2005, 5, 760-766.                                                                                                 | 4.1 | 21        |
| 51 | Immobilization of urease on cation-exchange membranes prepared by radiation-initiated graft copolymerization of acrylic acid on polyethene thin films. Polymer Bulletin, 2005, 55, 467-475.                                                                      | 3.3 | 4         |
| 52 | Gluconic Acid Production in Bioreactor with Immobilized Glucose Oxidase Plus Catalase on Polymer<br>Membrane Adjacent to Anion-Exchange Membrane. Macromolecular Bioscience, 2004, 4, 950-956.                                                                   | 4.1 | 47        |