Lisa M Wingen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/405784/publications.pdf Version: 2024-02-01

LISA M WINCEN

#	Article	IF	CITATIONS
1	Exposure to environmentally relevant concentrations of ambient fine particulate matter (PM2.5) depletes the ovarian follicle reserve and causes sex-dependent cardiovascular changes in apolipoprotein E null mice. Particle and Fibre Toxicology, 2022, 19, 5.	2.8	13
2	Effects of the VACES particle concentrator on secondary organic aerosol and ambient particle composition. Aerosol Science and Technology, 2022, 56, 785-801.	1.5	0
3	Evidence for a kinetically controlled burying mechanism for growth of high viscosity secondary organic aerosol. Environmental Sciences: Processes and Impacts, 2020, 22, 66-83.	1.7	14
4	Open questions on the chemical composition of airborne particles. Communications Chemistry, 2020, 3, .	2.0	16
5	Enhanced Gas Uptake during α-Pinene Ozonolysis Points to a Burying Mechanism. ACS Earth and Space Chemistry, 2020, 4, 1435-1447.	1.2	4
6	Seasonal effects of ambient PM _{2.5} on the cardiovascular system of hyperlipidemic mice. Journal of the Air and Waste Management Association, 2020, 70, 307-323.	0.9	4
7	Probing surfaces of atmospherically relevant organic particles by easy ambient sonic-spray ionization mass spectrometry (EASI-MS). Chemical Science, 2019, 10, 884-897.	3.7	14
8	Role of Gas-Phase Halogen Bonding in Ambient Chemical Ionization Mass Spectrometry Utilizing Iodine. ACS Earth and Space Chemistry, 2019, 3, 1315-1328.	1.2	3
9	New Mechanism of Extractive Electrospray Ionization Mass Spectrometry for Heterogeneous Solid Particles. Analytical Chemistry, 2018, 90, 2055-2062.	3.2	22
10	Understanding interactions of organic nitrates with the surface and bulk of organic films: implications for particle growth in the atmosphere. Environmental Sciences: Processes and Impacts, 2018, 20, 1593-1610.	1.7	12
11	Reactive Uptake of Ammonia by Biogenic and Anthropogenic Organic Aerosols. ACS Symposium Series, 2018, , 127-147.	0.5	6
12	Can Reactions between Ozone and Organic Constituents of Ambient Particulate Matter Influence Effects on the Cardiovascular System?. ACS Symposium Series, 2018, , 439-458.	0.5	1
13	Reactive uptake of ammonia by secondary organic aerosols: Implications for air quality. Atmospheric Environment, 2018, 189, 1-8.	1.9	14
14	A cautionary note on the effects of laboratory air contaminants on ambient ionization mass spectrometry measurements. Rapid Communications in Mass Spectrometry, 2017, 31, 1659-1668.	0.7	12
15	New insights into atmospherically relevant reaction systems using direct analysis in real-time mass spectrometry (DART-MS). Atmospheric Measurement Techniques, 2017, 10, 1373-1386.	1.2	19
16	Phase, composition, and growth mechanism for secondary organic aerosol from the ozonolysis of <i>l±</i> -cedrene. Atmospheric Chemistry and Physics, 2016, 16, 3245-3264.	1.9	33
17	The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13514-13519.	3.3	76
18	Role of the reaction of stabilized Criegee intermediates with peroxy radicals in particle formation and growth in air. Physical Chemistry Chemical Physics, 2015, 17, 12500-12514.	1.3	78

LISA M WINGEN

#	Article	IF	CITATIONS
19	Integrating phase and composition of secondary organic aerosol from the ozonolysis of α-pinene. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7552-7557.	3.3	130
20	Rapid formation of molecular bromine from deliquesced NaBr aerosol in the presence of ozone and UV light. Atmospheric Environment, 2014, 89, 491-506.	1.9	12
21	A semi-blind source separation method for differential optical absorption spectroscopy of atmospheric gas mixtures. Inverse Problems and Imaging, 2014, 8, 587-610.	0.6	0
22	Nitrate Ion Photolysis in Thin Water Films in the Presence of Bromide Ions. Journal of Physical Chemistry A, 2011, 115, 5810-5821.	1.1	54
23	Enhanced surface photochemistry in chloride–nitrate ion mixtures. Physical Chemistry Chemical Physics, 2008, 10, 5668.	1.3	69
24	New Experimental and Theoretical Approach to the Heterogeneous Hydrolysis of NO2:Â Key Role of Molecular Nitric Acid and Its Complexesâ€. Journal of Physical Chemistry A, 2006, 110, 6886-6897.	1.1	113
25	The nature of water on surfaces of laboratory systems and implications for heterogeneous chemistry in the troposphere. Physical Chemistry Chemical Physics, 2004, 6, 604.	1.3	214
26	Formation of Molecular Bromine from the Reaction of Ozone with Deliquesced NaBr Aerosol: Evidence for Interface Chemistry. Journal of Physical Chemistry A, 2004, 108, 11559-11572.	1.1	138
27	The heterogeneous hydrolysis of NO2 in laboratory systems and in outdoor and indoor atmospheres: An integrated mechanism. Physical Chemistry Chemical Physics, 2003, 5, 223-242.	1.3	577
28	Infrared Absorption Cross-Section Measurements for Nitrous Acid (HONO) at Room Temperature. Journal of Physical Chemistry A, 2000, 104, 1692-1699.	1.1	61
29	A Unique Method for Laboratory Quantification of Gaseous Nitrous Acid (HONO) Using the Reaction HONO + HCl → ClNO + H2O. Journal of Physical Chemistry A, 2000, 104, 329-335.	1.1	21
30	An upper limit on the production of N2O from the reaction of O(¹D) With CO2in the presence of N2. Geophysical Research Letters, 1998, 25, 517-520.	1.5	7
31	Chromatography, Absorption, and Fluorescence: A New Instrumental Analysis Experiment on the Measurement of Polycyclic Aromatic Hydrocarbons in Cigarette Smoke. Journal of Chemical Education, 1998, 75, 1599.	1.1	14
32	Rate Constants for the Reactions of Chlorine Atoms with Some Simple Alkanes at 298 K: Measurement of a Self-Consistent Set Using Both Absolute and Relative Rate Methods. The Journal of Physical Chemistry, 1995, 99, 13156-13162.	2.9	60