List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4057671/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of the Supporting Surface in the Thermodynamics and Cooperativity of Axial Ligand Binding to Metalloporphyrins at Interfaces. Current Organic Chemistry, 2022, 26, 553-562.	1.6	1
2	Scanning Tunneling Microscopy Reveals Surface Diffusion of Single Double-Decker Phthalocyanine Molecules at the Solution/Solid Interface. Journal of Physical Chemistry C, 2022, 126, 4140-4149.	3.1	8
3	Single-Molecule Kinetic Analysis of Oxygenation of Co(II) Porphyrin at the Solution/Solid Interface. Journal of Physical Chemistry Letters, 2022, 13, 4918-4923.	4.6	4
4	STM Investigation of the Y[C6S-Pc]2 and Y[C4O-Pc]2Complex at the Solution–Solid Interface: Substrate Effects, Submolecular Resolution, and Vacancies. Journal of Physical Chemistry C, 2021, 125, 1421-1431.	3.1	10
5	Quantifying Reversible Nitrogenous Ligand Binding to Co(II) Porphyrin Receptors at the Solution/Solid Interface and in Solution. ECS Meeting Abstracts, 2021, MA2021-01, 788-788.	0.0	Ο
6	STM Investigation of Y[C6s-Pc]2 and Y[C4o-Pc]2 Complexes at the Solution/Solid Interface: Substrate Effects, Sub-Molecular Resolution, and Covalently Saturated Sulfur. ECS Meeting Abstracts, 2021, MA2021-01, 787-787.	0.0	0
7	Quantifying reversible nitrogenous ligand binding to Co(<scp>ii</scp>) porphyrin receptors at the solution/solid interface and in solution. Physical Chemistry Chemical Physics, 2020, 22, 24226-24235.	2.8	6
8	Cooperative Binding of 1-Phenylimidazole to Cobalt(II) Octaethylporphyrin on Graphite: A Quantitative Imaging and Computational Study at Molecular Resolution. Journal of Physical Chemistry C, 2020, 124, 18639-18649.	3.1	8
9	Single molecule level studies of reversible ligand binding to metal porphyrins at the solution/solid interface. Journal of Porphyrins and Phthalocyanines, 2020, 24, 993-1002.	0.8	5
10	Structure, Properties, and Reactivity of Porphyrins on Surfaces and Nanostructures with Periodic DFT Calculations. Applied Sciences (Switzerland), 2020, 10, 740.	2.5	18
11	Morphology Dependent Conductivity and Photoconductivity of Ionic Porphyrin Crystalline Assemblies. ECS Journal of Solid State Science and Technology, 2020, 9, 061010.	1.8	3
12	Cooperativity and coverage dependent molecular desorption in self-assembled monolayers: computational case study with coronene on Au(111) and HOPG. Physical Chemistry Chemical Physics, 2019, 21, 10505-10513.	2.8	11
13	Mechanical behavior of crystalline ionic porphyrins. Journal of Porphyrins and Phthalocyanines, 2019, 23, 154-165.	0.8	2
14	Balancing Noncovalent Interactions in the Self-Assembly of Nonplanar Aromatic Carboxylic Acid MOF Linkers at the Solution/Solid Interface: HOPG vs Au(111). Langmuir, 2019, 35, 5271-5280.	3.5	11
15	Tuning the optoelectronic characteristics of ionic organic crystalline assemblies. Journal of Materials Chemistry C, 2018, 6, 4041-4056.	5.5	15
16	Kinetic and Thermodynamic Control in Porphyrin and Phthalocyanine Self-Assembled Monolayers. Langmuir, 2018, 34, 3-17.	3.5	37
17	A Systematic Approach toward Designing Functional Ionic Porphyrin Crystalline Materials. Journal of Physical Chemistry C, 2018, 122, 22803-22820.	3.1	25
18	Structure-Function Correlation of Photoactive Ionic pi-Conjugated Binary Porphyrin Assemblies. MRS Advances, 2017, 2, 2267-2273.	0.9	0

#	Article	IF	CITATIONS
19	Photoconductive behavior of binary porphyrin crystalline assemblies. Journal of Porphyrins and Phthalocyanines, 2017, 21, 569-580.	0.8	12
20	Functional Porphyrin Nanostructures for Molecular Electronics: Structural, Mechanical, and Electronic Properties of Self-Assembled Ionic Metal-Free Porphyrins. , 2016, , 69-103.		8
21	Influence of the Central Metal Ion on the Desorption Kinetics of a Porphyrin from the Solution/HOPG Interface. Journal of Physical Chemistry C, 2016, 120, 18140-18150.	3.1	18
22	Surface directed reversible imidazole ligation to nickel(<scp>ii</scp>) octaethylporphyrin at the solution/solid interface: a single molecule level study. Physical Chemistry Chemical Physics, 2016, 18, 20819-20829.	2.8	23
23	Comprehensive structure–function correlation of photoactive ionic π-conjugated supermolecular assemblies: an experimental and computational study. Journal of Materials Chemistry C, 2016, 4, 10223-10239.	5.5	32
24	Persistent Conductivity in TPyP:TSPP Organic Nanorods Induced by Ion Bombardment. Journal of Physical Chemistry C, 2016, 120, 14962-14968.	3.1	5
25	A New variable temperature solution-solid interface scanning tunneling microscope. Microscopy and Microanalysis, 2015, 21, 2187-2188.	0.4	0
26	Hyperbranched crystalline nanostructure produced from ionic π-conjugated molecules. Chemical Communications, 2015, 51, 2663-2666.	4.1	23
27	Kinetically Trapped Two-Component Self-Assembled Adlayer. Journal of Physical Chemistry C, 2015, 119, 25364-25376.	3.1	27
28	Kinetic and thermodynamic processes of organic species at the solution–solid interface: the view through an STM. Chemical Communications, 2015, 51, 4737-4749.	4.1	93
29	Desorption Kinetics and Activation Energy for Cobalt Octaethylporphyrin from Graphite at the Phenyloctane Solution–Graphite Interface: An STM Study. Journal of Physical Chemistry C, 2015, 119, 9386-9394.	3.1	26
30	Polymorphic, Porous, and Host–Guest Nanostructures Directed by Monolayer–Substrate Interactions: Epitaxial Self-Assembly Study of Cyclic Trinuclear Au(I) Complexes on HOPG at the Solution–Solid Interface. Journal of Physical Chemistry C, 2015, 119, 24844-24858.	3.1	15
31	Predicting the Size Distribution in Crystallization of TSPP:TMPyP Binary Porphyrin Nanostructures in a Batch Desupersaturation Experiment. Crystal Growth and Design, 2014, 14, 6599-6606.	3.0	22
32	Correlating elastic properties and molecular organization of an ionic organic nanostructure. Nanoscale, 2014, 6, 316-327.	5.6	45
33	A new variable temperature solution-solid interface scanning tunneling microscope. Review of Scientific Instruments, 2014, 85, 103701.	1.3	9
34	A Single Molecule Level Study of the Temperature-Dependent Kinetics for the Formation of Metal Porphyrin Monolayers on Au(111) from Solution. Journal of the American Chemical Society, 2014, 136, 2142-2148.	13.7	61
35	Effect of dispersion on surface interactions of cobalt(<scp>ii</scp>) octaethylporphyrin monolayer on Au(111) and HOPG(0001) substrates: a comparative first principles study. Physical Chemistry Chemical Physics, 2014, 16, 14096-14107.	2.8	58
36	Temperature Stability of Three Commensurate Surface Structures of Coronene Adsorbed on Au(111) from Heptanoic Acid in the 0 to 60 °C Range. Journal of Physical Chemistry C, 2013, 117, 2914-2919.	3.1	32

#	Article	IF	CITATIONS
37	Electron affinity states of metal supported phthalocyanines measured by tunneling spectroscopy. Journal of Porphyrins and Phthalocyanines, 2012, 16, 273-281.	0.8	14
38	Charge transfer induced chemical reaction of tetracyano-p-quinodimethane adsorbed on graphene. RSC Advances, 2012, 2, 10579.	3.6	24
39	Single Molecule Imaging of Oxygenation of Cobalt Octaethylporphyrin at the Solution/Solid Interface: Thermodynamics from Microscopy. Journal of the American Chemical Society, 2012, 134, 14897-14904.	13.7	83
40	Protonation state of core nitrogens in the <i>meso</i> -tetra(4-carboxyphenyl)porphyrin impacts the chemical and physical properties of nanostructures formed in acid solutions. Journal of Porphyrins and Phthalocyanines, 2012, 16, 1233-1243.	0.8	17
41	Structural and Electronic Properties of Columnar Supramolecular Assemblies Formed from Ionic Metal-Free Phthalocyanine on Au(111). Journal of Physical Chemistry C, 2011, 115, 16305-16314.	3.1	12
42	Aggregation of sulfonated free-base phthalocyanine on gold as a function of solution pH. Journal of Porphyrins and Phthalocyanines, 2011, 15, 459-466.	0.8	2
43	A Self-Assembled Two-Dimensional Zwitterionic Structure: H ₆ TSPP Studied on Graphite. Journal of Physical Chemistry C, 2011, 115, 3990-3999.	3.1	38
44	Crystallographic STM image processing of 2D periodic and highly symmetric molecule arrays. , 2011, , .		5
45	Resonance Raman Spectroscopy of Helical Porphyrin Nanotubes: Hierarchal Structure and Exciton Coupling. , 2010, , .		Ο
46	The Role of Solvent in the Hierarchal Structure of a Porphyrin Aggregate. , 2010, , .		0
47	Resonance Raman Spectroscopy of Helical Porphyrin Nanotubes. Journal of Physical Chemistry C, 2010, 114, 16357-16366.	3.1	16
48	Differing HOMO and LUMO Mediated Conduction in a Porphyrin Nanorod. Journal of the American Chemical Society, 2010, 132, 8554-8556.	13.7	66
49	Solvent-Induced Variations in Surface Structure of a 2,9,16,23-Tetra-tert-butyl-phthalocyanine on Graphite. Journal of Physical Chemistry C, 2009, 113, 17479-17483.	3.1	23
50	New Nanoscale Insights into the Internal Structure of Tetrakis(4-sulfonatophenyl) Porphyrin Nanorods. Journal of Physical Chemistry C, 2009, 113, 1709-1718.	3.1	71
51	Spontaneous Solution-Phase Redox Deposition of a Dense Cobalt(II) Phthalocyanine Monolayer on Gold. Journal of Physical Chemistry B, 2004, 108, 17003-17006.	2.6	24
52	Nanomechanical properties of ordered phthalocyanine Langmuir–Blodgett layers. Journal of Materials Research, 2004, 19, 1461-1470.	2.6	14
53	Highly ordered thin films prepared with octabutoxy copper phthalocyanine complexes. Ultramicroscopy, 2003, 97, 271-278.	1.9	14
54	Scanning Tunneling Microscopy, Orbital-Mediated Tunneling Spectroscopy, and Ultraviolet Photoelectron Spectroscopy of Metal(II) Tetraphenylporphyrins Deposited from Vapor. Journal of the American Chemical Society, 2001, 123, 4073-4080.	13.7	246

#	Article	IF	CITATIONS
55	Orbital Mediated Tunneling in Vanadyl Phthalocyanine Observed in both Tunnel Diode and STM Environments. Journal of Physical Chemistry B, 2000, 104, 2444-2447.	2.6	75
56	Scanning Tunneling Microscopy of Metal Phthalocyanines:Â d7and d9Cases. Journal of the American Chemical Society, 1996, 118, 7197-7202.	13.7	359
57	Amorphous or nanocrystalline AlN thin films formed from AlN: H. Journal of Materials Research, 1994, 9, 1449-1455.	2.6	15
58	Resonant Tunneling in Metal Phthalocyanines. The Journal of Physical Chemistry, 1994, 98, 8169-8172.	2.9	33