Yongzhe Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4057651/publications.pdf

Version: 2024-02-01

90 papers 2,250 citations

257450 24 h-index 254184 43 g-index

92 all docs 92 docs citations 92 times ranked 3433 citing authors

#	Article	IF	CITATIONS
1	p-/n-Type modulation of 2D transition metal dichalcogenides for electronic and optoelectronic devices. Nano Research, 2022, 15, 123-144.	10.4	20
2	Lightâ€Rewritable Logic Devices Based on Van der Waals Heterostructures. Advanced Electronic Materials, 2022, 8, 2100708.	5.1	5
3	Binary-ternary transition metal chalcogenides interlayer coupling in van der Waals type-II heterostructure for visible-infrared photodetector with efficient suppression dark currents. Nano Research, 2022, 15, 2689-2696.	10.4	16
4	Growth of centimeter scale Nb1â^'xWxSe2 monolayer film by promoter assisted liquid phase chemical vapor deposition. Nano Research, 2022, 15, 2608-2615.	10.4	9
5	A Highâ€Performance Inâ€Memory Photodetector Realized by Charge Storage in a van der Waals MISFET. Advanced Materials, 2022, 34, e2107734.	21.0	15
6	The Chinese medicine Fufang Zhenzhu Tiaozhi capsule protects against renal injury and inflammation in mice with diabetic kidney disease. Journal of Ethnopharmacology, 2022, 292, 115165.	4.1	13
7	Toward Efficiency Limits of Crystalline Silicon Solar Cells: Recent Progress in Highâ€Efficiency Silicon Heterojunction Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	41
8	Limiting Factors of Detectivity in Near-Infrared Colloidal Quantum Dot Photodetectors. ACS Applied Materials &	8.0	11
9	Dual Optimization of Bulk and Surface via Guanidine Halide for Efficient and Stable 2D/3D Hybrid Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	30
10	Switchable Unipolarâ€Barrier Van der Waals Heterostructures with Natural Anisotropy for Full Linear Polarimetry Detection. Advanced Materials, 2022, 34, .	21.0	17
11	Toward Efficiency Limits of Crystalline Silicon Solar Cells: Recent Progress in Highâ€Efficiency Silicon Heterojunction Solar Cells (Adv. Energy Mater. 23/2022). Advanced Energy Materials, 2022, 12, .	19.5	5
12	Dual tunable terahertz polarization conversion enabled by Double-Layer Graphene Metasurface. Optics Communications, 2022, 521, 128575.	2.1	0
13	The fault detection of transmitting current encoded by m-sequence using triple-correlation function in helicopter-borne electromagnetic method. Review of Scientific Instruments, 2022, 93, 074501.	1.3	1
14	Effect of temperature on the performance of perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2021, 32, 12784-12792.	2.2	44
15	Infrared colloidal quantum dots for photoelectric conversion devices. Journal of Materials Chemistry C, 2021, 9, 2994-3025.	5.5	9
16	Rapid degradation behavior of encapsulated perovskite solar cells under light, bias voltage or heat fields. Nanoscale Advances, 2021, 3, 6128-6137.	4.6	15
17	All-Inorganic Perovskite Nanosheet Fabrication under Synergistic Effect for Integrated Optoelectronics with Strong Light–Matter Interactions. ACS Applied Nano Materials, 2021, 4, 2634-2641.	5.0	3
18	Identification of embedded nanotwins at c-Si/a-Si:H interface limiting the performance of high-efficiency silicon heterojunction solar cells. Nature Energy, 2021, 6, 194-202.	39.5	52

#	Article	IF	CITATIONS
19	Influence of Fluorinated Components on Perovskite Solar Cells Performance and Stability. Small, 2021, 17, e2004081.	10.0	29
20	Spectral Discrimination Sensors Based on Nanomaterials and Nanostructures: A Review. IEEE Sensors Journal, 2021, 21, 4044-4060.	4.7	8
21	Controllable Liquid Exfoliation of Fibrous Phosphorus and Its Live-Cell Imaging. Inorganic Chemistry, 2021, 60, 4883-4890.	4.0	5
22	Minimizing Openâ€Circuit Voltage Loss in Perovskite/Si Tandem Solar Cells via Exploring the Synergic Effect of Cations and Anions. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100119.	2.4	7
23	Enhanced Photodetection Performance in Graphene-Assisted Tunneling Photodetector. IEEE Transactions on Electron Devices, 2021, 68, 1702-1709.	3.0	13
24	Direct fabrication of electrochromic Ni-MOF 74 film on ITO with high-stable performance. Ionics, 2021, 27, 3655-3662.	2.4	10
25	Deacetylated Sp1 improves β‑glycerophosphate‑induced calcification in vascular smooth muscle cells. Experimental and Therapeutic Medicine, 2021, 22, 1152.	1.8	4
26	Performance of heterojunction solar cells with different intrinsic a-Si:H thin layers deposited by RF-and VHF-PECVD. Journal of Materials Science: Materials in Electronics, 2021, 32, 25327-25331.	2.2	4
27	High performance sub-bandgap photodetection <i>via</i> internal photoemission based on ideal metal/2D-material van der Waals Schottky interface. Nanoscale, 2021, 13, 16448-16456.	5.6	14
28	Carrier mobility tuning of MoS2 by strain engineering in CVD growth process. Nano Research, 2021, 14, 2314.	10.4	27
29	Design and Performance Study of Hybrid Graphene/HgCdTe Mid-Infrared Photodetector. IEEE Sensors Journal, 2021, 21, 26708-26715.	4.7	8
30	Improved efficiency and stability of flexible perovskite solar cells by a new spacer cation additive. RSC Advances, 2021, 11, 33637-33645.	3.6	6
31	Application of Indium Tin Oxide/Aluminum-Doped Zinc Oxide Transparent Conductive Oxide Stack Films in Silicon Heterojunction Solar Cells. ACS Applied Energy Materials, 2021, 4, 13586-13592.	5.1	17
32	Liquid Exfibration and Optoelectronic Devices of Fibrous Phosphorus. Inorganic Chemistry, 2020, 59, 976-979.	4.0	11
33	Engineering grain boundaries at the \hat{A} 2D limit for the \hat{A} hydrogen evolution reaction. Nature Communications, 2020, 11 , 57 .	12.8	153
34	Flexible perovskite solar cells fabricated by a gradient heat treatment process. Sustainable Energy and Fuels, 2020, 4, 824-831.	4.9	8
35	Integrated Molar Chiral Sensing Based on High- <i>Q</i> Metasurface. Nano Letters, 2020, 20, 8696-8703.	9.1	89
36	Transition metal dichalcogenides thyristor realized by solid ionic conductor gate induced doping. Applied Physics Letters, 2020, 117, 053102.	3.3	2

3

#	Article	IF	CITATIONS
37	A Simulation of the Impact of Curb Parking Behavior on Traffic Based on a Cellular Automata Model. , 2020, , .		O
38	Achieving high efficiency silicon heterojunction solar cells by applying high hydrogen content amorphous silicon as epitaxial-free buffer layers. Thin Solid Films, 2020, 711, 138305.	1.8	7
39	Controlled synthesis of few-layer SnSe ₂ by chemical vapor deposition. RSC Advances, 2020, 10, 42157-42163.	3.6	14
40	Strain Effect Enhanced Ultrasensitive MoS ₂ Nanoscroll Avalanche Photodetector. Journal of Physical Chemistry Letters, 2020, 11, 4490-4497.	4.6	23
41	Valley Polarization and Valleyresistance in a Monolayer Transition Metal Dichalcogenide Superlattice. Journal of Physical Chemistry Letters, 2020, 11, 3882-3888.	4.6	4
42	Influence of polytetrafluoroethylene (PTFE) on photovoltaic performance and perovskite solar cell stability. Sustainable Energy and Fuels, 2020, 4, 4257-4263.	4.9	13
43	Crystal phase tuning and valence engineering in non-noble catalysts for outstanding overall water splitting. Journal of Materials Chemistry A, 2020, 8, 4524-4532.	10.3	13
44	Photoelectric properties of quasi one-dimensional layered KP15. Materials Letters, 2020, 272, 127826.	2.6	1
45	Effect of residual water vapor on the performance of indium tin oxide film and silicon heterojunction solar cell. Solar Energy, 2020, 204, 720-725.	6.1	9
46	Facile and efficient preparation of high-quality black phosphorus quantum dot films for sensing applications. RSC Advances, 2020, 10, 13379-13385.	3.6	2
47	Nanoscrolls: Highâ€Performance Photodiode Based on Atomically Thin WSe ₂ /MoS ₂ Nanoscroll Integration (Small 30/2019). Small, 2019, 15, 1970160.	10.0	3
48	Effect of Nanobubble Evolution on Hydrate Process: A Review. Journal of Thermal Science, 2019, 28, 948-961.	1.9	34
49	CH3NH3Br solution as a novel platform for the selective fluorescence detection of Pb2+ ions. Scientific Reports, 2019, 9, 15840.	3.3	11
50	Mechanism of Pbl ₂ in Situ Passivated Perovskite Films for Enhancing the Performance of Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2019, 11, 44101-44108.	8.0	100
51	Simulation of double buffer layer on CIGS solar cell with SCAPS software. Optical and Quantum Electronics, 2019, 51, 1.	3.3	26
52	Metamaterial grating-integrated graphene photodetector with broadband high responsivity. Applied Surface Science, 2019, 473, 633-640.	6.1	37
53	Graphene/Si Schottky solar cells: a review of recent advances and prospects. RSC Advances, 2019, 9, 863-877.	3.6	63
54	Field enhanced in-plane homostructure in a pure MoSe ₂ phototransistor for the efficient separation of photo-excited carriers. Journal of Materials Chemistry C, 2019, 7, 1182-1187.	5.5	6

#	Article	IF	CITATIONS
55	Cascade-type energy band design of a black phosphorus photodetector with high performance. Journal of Materials Chemistry C, 2019, 7, 2232-2239.	5.5	17
56	Effect of deposition temperature of a-Si:H layer on the performance of silicon heterojunction solar cell. Journal of Materials Science: Materials in Electronics, 2019, 30, 13330-13335.	2.2	21
57	Highâ€Performance Photodiode Based on Atomically Thin WSe ₂ /MoS ₂ Nanoscroll Integration. Small, 2019, 15, e1901544.	10.0	44
58	Self-powered and fast photodetector based on graphene/MoSe2/Au heterojunction. Superlattices and Microstructures, 2019, 130, 87-92.	3.1	34
59	Enhanced Performance of a CVD MoS ₂ Photodetector by Chemical in Situ n-Type Doping. ACS Applied Materials & Doping Interfaces, 2019, 11, 11636-11644.	8.0	82
60	Enhanced properties of hierarchically-nanostructured undoped acceptor-rich ZnO single-crystal microtube irradiated by UV laser. Journal of Alloys and Compounds, 2019, 789, 841-851.	5 . 5	11
61	A tunable floating-base bipolar transistor based on a 2D material homojunction realized using a solid ionic dielectric material. Nanoscale, 2019, 11, 22531-22538.	5.6	7
62	Enhanced photoresponsivity of the GOQDs decorated WS ₂ photodetector. Materials Research Express, 2019, 6, 045902.	1.6	14
63	High performance photodetector based on graphene/MoS2/graphene lateral heterostrurcture with Schottky junctions. Journal of Alloys and Compounds, 2019, 779, 140-146.	5.5	68
64	SnO2-based electron transporting layer materials for perovskite solar cells: A review of recent progress. Journal of Energy Chemistry, 2019, 35, 144-167.	12.9	129
65	Highly Inâ€Plane Optical and Electrical Anisotropy of 2D Germanium Arsenide. Advanced Functional Materials, 2018, 28, 1707379.	14.9	121
66	Selective 6H-SiC White Light Emission by Picosecond Laser Direct Writing. Scientific Reports, 2018, 8, 257.	3.3	8
67	A highly polarization sensitive antimonene photodetector with a broadband photoresponse and strong anisotropy. Journal of Materials Chemistry C, 2018, 6, 2509-2514.	5.5	66
68	High Anisotropy in Tubular Layered Exfoliated KP ₁₅ . ACS Nano, 2018, 12, 1712-1719.	14.6	24
69	Building Integrated Photovoltaic Module-Based on Aluminum Substrate With Forced Water Cooling. Journal of Solar Energy Engineering, Transactions of the ASME, 2018, 140, 0210051-210055.	1.8	5
70	Rediscovering the MP ₁₅ Family (M = Li, Na, and K) as an Anisotropic Layered Semiconducting Material. Journal of Physical Chemistry Letters, 2018, 9, 732-738.	4.6	15
71	Large-area perovskite solar cells – a review of recent progress and issues. RSC Advances, 2018, 8, 10489-10508.	3.6	171
72	Influences of donor defect passivation on the performance of Cu(In,Ga)Se2 thin-film solar cell. Journal of Materials Science: Materials in Electronics, 2018, 29, 3482-3491.	2.2	5

#	Article	IF	CITATIONS
73	Electrical Characteristics of a Hybrid Photovoltaic/Thermoelectric Generator System. Energy Technology, 2018, 6, 1248-1254.	3.8	15
74	Two dimensional materials based photodetectors. Infrared Physics and Technology, 2018, 88, 149-173.	2.9	79
75	Control of the structure and photoelectrical properties of Cu(InGa)Se2 film by Ga deposition potential in two-step electrodeposition. Journal of Materials Science: Materials in Electronics, 2018, 29, 20104-20112.	2.2	4
76	Photoluminescence Lifetime of Black Phosphorus Nanoparticles and Their Applications in Live Cell Imaging. ACS Applied Materials & Samp; Interfaces, 2018, 10, 31136-31145.	8.0	25
77	Photodetectors: High Detectivity from a Lateral Graphene–MoS ₂ Schottky Photodetector Grown by Chemical Vapor Deposition (Adv. Electron. Mater. 9/2018). Advanced Electronic Materials, 2018, 4, 1870042.	5.1	1
78	High Detectivity from a Lateral Graphene–MoS ₂ Schottky Photodetector Grown by Chemical Vapor Deposition. Advanced Electronic Materials, 2018, 4, 1800069.	5.1	42
79	Nanowires of KP15 produced by liquid exfoliation. Materials Letters, 2018, 228, 89-91.	2.6	6
80	Exciton emissions in quasi one-dimensional layered KP15. Nanoscale, 2018, 10, 16479-16484.	5.6	3
81	Visible-infrared dual-mode MoS ₂ -graphene-MoS ₂ phototransistor with high ratio of the <i>I</i> _{ph} / <i>I</i> _{dark} . 2D Materials, 2018, 5, 045027.	4.4	28
82	Understand the Degradation Mechanism of Electrochromic WO ₃ Films by Doubleâ€step Chronoamperometry and Chronocoulometry Techniques Combined with ⟨i⟩in situ⟨/i⟩ Spectroelectrochemical Study. Electroanalysis, 2017, 29, 1573-1585.	2.9	17
83	Optimization of the window layer in large area silicon heterojunction solar cells. RSC Advances, 2017, 7, 9258-9263.	3.6	20
84	Effects of substrates on Raman spectroscopy in chemical vapor deposition grown graphene transferred with poly (methyl methacrylate). Solid State Communications, 2017, 264, 31-34.	1.9	14
85	Electrochromic modulation of near-infrared light by WO3 films deposited on silver nanowire substrates. Journal of Materials Science, 2017, 52, 12783-12794.	3.7	24
86	Effect of different operating media on the PVT system. , 2017, , .		0
87	Clarifying the preferential occupation of Ga ³⁺ ions in YAG:Ce,Ga nanocrystals with various Ga ³⁺ -doping concentrations by nuclear magnetic resonance spectroscopy. Journal of Materials Chemistry C, 2016, 4, 10691-10700.	5.5	20
88	Improvement on optical modulation and stability of the NiO based electrochromic devices by nanocrystalline modified nanocomb hybrid structure. RSC Advances, 2015, 5, 101487-101493.	3.6	14
89	Hydrothermal Fabrication and Catalytic Properties of YBa2Cu3O7 Single Crystallites for Methane Combustion. Catalysis Letters, 2010, 135, 126-134.	2.6	8
90	Electric-field regulated crystallization process for enhanced performance of perovskite solar cells. Sustainable Energy and Fuels, 0, , .	4.9	0