Jeroen Missinne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4057256/publications.pdf

Version: 2024-02-01

44 papers

632 citations

16 h-index 24 g-index

44 all docs 44 docs citations

44 times ranked 756 citing authors

#	Article	IF	CITATIONS
1	PIXAPP Photonics Packaging Pilot Line – Development of a Silicon Photonic Optical Transceiver With Pluggable Fiber Connectivity. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-11.	2.9	9
2	Laser Written Glass Interposer for Fiber Coupling to Silicon Photonic Integrated Circuits. IEEE Photonics Journal, 2021, 13, 1-12.	2.0	12
3	Monolithic integration of microlenses on the backside of a silicon photonics chip for expanded beam coupling. Optics Express, 2021, 29, 7601.	3.4	12
4	Effect of ultrashort laser-induced surface flaws on architectural glass strength. Construction and Building Materials, 2021, 295, 123590.	7.2	6
5	Technological Challenges in the Development of Optogenetic Closed-Loop Therapy Approaches in Epilepsy and Related Network Disorders of the Brain. Micromachines, 2021, 12, 38.	2.9	8
6	Laser-fabricated ball lens optical interface for back side coupling to a silicon photonics sensor chip. , 2021, , .		O
7	Expanded-Beam Backside Coupling Interface for Alignment-Tolerant Packaging of Silicon Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26, 1-7.	2.9	8
8	Imprinted Polymer-Based Guided Mode Resonance Grating Strain Sensors. Sensors, 2020, 20, 3221.	3.8	10
9	Fabrication of a Shear Stress Sensor Matrix Using Standard Printed Circuit Board and Overmolding Technologies. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 10, 479-486.	2.5	3
10	Ball Lens Embedded Through-Package Via To Enable Backside Coupling Between Silicon Photonics Interposer and Board-Level Interconnects. Journal of Lightwave Technology, 2020, 38, 2360-2369.	4.6	5
11	Femtosecond Laser-inscribed Non-volatile Integrated Optical Switch in Fused Silica based on Microfluidics-controlled Total Internal Reflection. Journal of Lightwave Technology, 2020, , 1-1.	4.6	1
12	Design and fabrication of blazed gratings for a waveguide-type head mounted display. Optics Express, 2020, 28, 11175.	3.4	30
13	Mid-IR sensing platform for trace analysis in aqueous solutions based on a germanium-on-silicon waveguide chip with a mesoporous silica coating for analyte enrichment. Optics Express, 2020, 28, 27013.	3.4	19
14	Performance Evaluation of Backside Emitting O-Band Grating Couplers for 100-\$mu\$m-Thick Silicon Photonics Interposers. IEEE Photonics Journal, 2019, 11, 1-11.	2.0	9
15	Non-Volatile Microfluidics Controlled Switch Fabricated in Fused Silica by Femtosecond Laser Inscription., 2019,,.		O
16	Adaptive Patterning of Optical and Electrical Fan-Out for Photonic Chip Packaging. , 2019, , .		4
17	Comparison of different polymers and printing technologies for realizing flexible optical waveguide Bragg grating strain sensor foils. , 2019, , .		1
18	Alignment-tolerant interfacing of a photonic integrated circuit using back side etched silicon microlenses. , 2019, , .		4

#	Article	IF	CITATIONS
19	Thin and Flexible Polymer Photonic Sensor Foils for Monitoring Composite Structures. Advanced Engineering Materials, 2018, 20, 1701127.	3.5	20
20	Planar polymer waveguides with a graded-index profile resulting from intermixing of methacrylates in closed microchannels. Optical Materials, 2018, 76, 210-215.	3.6	2
21	Characterization of the Modal Parameters of Composite Laminates Using Innovative Ultrathin Polymer Waveguide Sensor Foils. Proceedings (mdpi), 2018, 2, 374.	0.2	0
22	Aerosol-Jet Printed Interconnects for 60-Gb/s CMOS Driver and Microring Modulator Transmitter Assembly. IEEE Photonics Technology Letters, 2018, 30, 1944-1947.	2.5	3
23	Bragg-Grating-Based Photonic Strain and Temperature Sensor Foils Realized Using Imprinting and Operating at Very Near Infrared Wavelengths. Sensors, 2018, 18, 2717.	3.8	18
24	All-organic switching polarizer based on polymer waveguides and liquid crystals. Optics Express, 2018, 26, 9584.	3.4	8
25	Aerosol-Jet Printed Interconnects for 2.5 D Electronic and Photonic Integration. Journal of Lightwave Technology, 2018, 36, 3528-3533.	4.6	9
26	An imprinted polymer-based guided mode resonance grating sensor. , 2018, , .		1
27	Low-Loss Connection of Embedded Optical Fiber Sensors Using a Self-Written Waveguide. IEEE Photonics Technology Letters, 2017, 29, 1731-1734.	2.5	2
28	Microfabricated devices for single objective single plane illumination microscopy (SoSPIM). Optics Express, 2017, 25, 1732.	3.4	23
29	Fabrication and Characterization of High-Optical-Quality-Factor Hybrid Polymer Microring Resonators Operating at Very Near Infrared Wavelengths. IEEE Photonics Journal, 2016, 8, 1-9.	2.0	18
30	Highly Sensitive Waveguide Bragg Grating Temperature Sensor Using Hybrid Polymers. IEEE Photonics Technology Letters, 2016, 28, 1150-1153.	2.5	23
31	Comparison of epoxy- and siloxane-based single-mode optical waveguides defined by direct-write lithography. Optical Materials, 2016, 52, 26-31.	3.6	37
32	Bragg Grating Sensors in Laser-written Single Mode Polymer Waveguides. Procedia Engineering, 2015, 120, 878-881.	1.2	3
33	Miniature Multiaxial Optoelectronic Shear Stress Sensing System Based on a Segmented Photodiode. IEEE Sensors Journal, 2015, 15, 4286-4291.	4.7	3
34	A Ka-band SiGe BICMOS power amplifier with 24 dBm output power. Microwave and Optical Technology Letters, 2015, 57, 718-722.	1.4	3
35	Stretchable optical waveguides. Optics Express, 2014, 22, 4168.	3.4	91
36	Curing kinetics of step-index and graded-index single mode polymer self-written waveguides. Optical Materials Express, 2014, 4, 1324.	3.0	16

#	Article	IF	CITATIONS
37	Flip-chip bonding of vertical-cavity surface-emitting lasers using laser-induced forward transfer. Applied Physics Letters, 2014, 104, .	3.3	18
38	Ultra Small Integrated Optical Fiber Sensing System. Sensors, 2012, 12, 12052-12069.	3.8	31
39	Photonic Incremental Pressure Sensor Based on Optical Feedback in a Polymer Embedded VCSEL. IEEE Photonics Technology Letters, 2012, 24, 1151-1153.	2.5	4
40	Two axis optoelectronic tactile shear stress sensor. Sensors and Actuators A: Physical, 2012, 186, 63-68.	4.1	16
41	Flexible Shear Sensor Based on Embedded Optoelectronic Components. IEEE Photonics Technology Letters, 2011, 23, 771-773.	2.5	45
42	Ultra Thin Optical Tactile Shear Sensor. Procedia Engineering, 2011, 25, 1393-1396.	1.2	8
43	Ultrathin Optoelectronic Device Packaging in Flexible Carriers. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 617-628.	2.9	44
44	Highly Reliable Flexible Active Optical Links. IEEE Photonics Technology Letters, 2010, 22, 287-289.	2.5	45