Ming Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4057021/publications.pdf

Version: 2024-02-01

361296 526166 2,177 31 20 27 h-index citations g-index papers 32 32 32 4651 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Interplay between c-Src and the APC/C co-activator Cdh1 regulates mammary tumorigenesis. Nature Communications, 2019, 10, 3716.	5.8	19
2	The expanded role of fatty acid metabolism in cancer: new aspects and targets. Precision Clinical Medicine, 2019, 2, 183-191.	1.3	119
3	Abi1 loss drives prostate tumorigenesis through activation of EMT and non-canonical WNT signaling. Cell Communication and Signaling, 2019, 17, 120.	2.7	43
4	Reactivation of PTEN tumor suppressor for cancer treatment through inhibition of a MYC-WWP1 inhibitory pathway. Science, 2019, 364, .	6.0	194
5	Vulnerabilities in mIDH2 AML confer sensitivity to APL-like targeted combination therapy. Cell Research, 2019, 29, 446-459.	5.7	32
6	SPOP Promotes Nanog Destruction to Suppress Stem Cell Traits and Prostate Cancer Progression. Developmental Cell, 2019, 48, 329-344.e5.	3.1	53
7	Abi1 loss drives prostate tumorigenesis through activation of EMT and noncanonical WNT signaling Journal of Clinical Oncology, 2019, 37, 280-280.	0.8	O
8	Deregulated PP1 \hat{l}_{\pm} phosphatase activity towards MAPK activation is antagonized by a tumor suppressive failsafe mechanism. Nature Communications, 2018, 9, 159.	5.8	39
9	An aberrant SREBP-dependent lipogenic program promotes metastatic prostate cancer. Nature Genetics, 2018, 50, 206-218.	9.4	229
10	Diverse genetic-driven immune landscapes dictate tumor progression through distinct mechanisms. Nature Medicine, 2018, 24, 165-175.	15.2	137
11	Molecular Genetics of APL. , 2018, , 41-53.		1
12	Preclinical and Coclinical Studies in Prostate Cancer. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a030544.	2.9	3
13	Loss of <i>LDAH</i> associated with prostate cancer and hearing loss. Human Molecular Genetics, 2018, 27, 4194-4203.	1.4	14
14	The functions and regulation of the PTEN tumour suppressor: new modes and prospects. Nature Reviews Molecular Cell Biology, 2018, 19, 547-562.	16.1	566
15	Compound haploinsufficiency of Dok2 and Dusp4 promotes lung tumorigenesis. Journal of Clinical Investigation, 2018, 129, 215-222.	3.9	16
16	The APC/C E3 Ligase Complex Activator FZR1 Restricts BRAF Oncogenic Function. Cancer Discovery, 2017, 7, 424-441.	7.7	57
17	Ornithine Decarboxylase Is Sufficient for Prostate Tumorigenesis via Androgen Receptor Signaling. American Journal of Pathology, 2016, 186, 3131-3145.	1.9	28
18	Endosome and INPP4B. Oncotarget, 2016, 7, 5-6.	0.8	18

#	Article	IF	CITATIONS
19	<i>In Vivo</i> Role of INPP4B in Tumor and Metastasis Suppression through Regulation of PI3K–AKT Signaling at Endosomes. Cancer Discovery, 2015, 5, 740-751.	7.7	86
20	Suppression of <i>CHK1</i> by ETS Family Members Promotes DNA Damage Response Bypass and Tumorigenesis. Cancer Discovery, 2015, 5, 550-563.	7.7	24
21	Targeting the miR-221–222/PUMA/BAK/BAX Pathway Abrogates Dexamethasone Resistance in Multiple Myeloma. Cancer Research, 2015, 75, 4384-4397.	0.4	76
22	Vulnerabilities of <i>PTEN</i> – <i>TP53</i> Deficient Prostate Cancers to Compound PARP–PI3K Inhibition. Cancer Discovery, 2014, 4, 896-904.	7.7	88
23	Loss of epithelial oestrogen receptor α inhibits oestrogenâ€stimulated prostate proliferation and squamous metaplasia via <i>in vivo</i> tissue selective knockout models. Journal of Pathology, 2012, 226, 17-27.	2.1	32
24	Reduced prostate branching morphogenesis in stromal fibroblast, but not in epithelial, estrogen receptor l± knockout mice. Asian Journal of Andrology, 2012, 14, 546-555.	0.8	14
25	Defects of Prostate Development and Reproductive System in the Estrogen Receptor-α Null Male Mice. Endocrinology, 2009, 150, 251-259.	1.4	67
26	CCDC62/ERAP75 functions as a coactivator to enhance estrogen receptor beta-mediated transactivation and target gene expression in prostate cancer cells. Carcinogenesis, 2009, 30, 841-850.	1.3	56
27	Generation and characterization of a complete null estrogen receptor α mouse using Cre/LoxP technology. Molecular and Cellular Biochemistry, 2009, 321, 145-153.	1.4	44
28	ERAP75 functions as a coactivator to enhance estrogen receptor \hat{l}_{\pm} transactivation in prostate stromal cells. Prostate, 2008, 68, 1273-1282.	1.2	15
29	ROLES OF VITAMIN E IN PROSTATE AND PROSTATE CANCER. , 2005, , 263-276.		1
30	FUNCTIONS OF ESTROGEN RECEPTOR IN PROSTATE AND PROSTATE CANCER., 2005, , 293-313.		0
31	Vitamin E succinate inhibits human prostate cancer cell growth via modulating cell cycle regulatory machinery. Biochemical and Biophysical Research Communications, 2003, 300, 357-363.	1.0	106