Jeremy Hughes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4056992/publications.pdf

Version: 2024-02-01

62 papers

4,452 citations

32 h-index 59 g-index

66 all docs 66
docs citations

66 times ranked 6668 citing authors

#	Article	IF	CITATIONS
1	Galectin-3 Expression and Secretion Links Macrophages to the Promotion of Renal Fibrosis. American Journal of Pathology, 2008, 172, 288-298.	1.9	460
2	Renal Aging: Causes and Consequences. Journal of the American Society of Nephrology: JASN, 2017, 28, 407-420.	3.0	306
3	Obstructive uropathy in the mouse: Role of osteopontin in interstitial fibrosis and apoptosis. Kidney International, 1999, 56, 571-580.	2.6	257
4	Impaired angiogenesis in the aging kidney: Vascular endothelial growth factor and Thrombospondin-1 in renal disease. American Journal of Kidney Diseases, 2001, 37, 601-611.	2.1	252
5	The Renal Mononuclear Phagocytic System. Journal of the American Society of Nephrology: JASN, 2012, 23, 194-203.	3.0	243
6	Conditional Ablation of Macrophages Halts Progression of Crescentic Glomerulonephritis. American Journal of Pathology, 2005, 167, 1207-1219.	1.9	223
7	Conditional Macrophage Ablation Demonstrates That Resident Macrophages Initiate Acute Peritoneal Inflammation. Journal of Immunology, 2005, 174, 2336-2342.	0.4	220
8	Dendritic cells and macrophages in the kidney: a spectrum of good and evil. Nature Reviews Nephrology, 2014, 10, 625-643.	4.1	161
9	Macrophage/monocyte depletion by clodronate, but not diphtheria toxin, improves renal ischemia/reperfusion injury in mice. Kidney International, 2012, 82, 928-933.	2.6	149
10	Tissue-resident Macrophages Protect the Liver From Ischemia Reperfusion Injury via a Heme Oxygenase-1-Dependent Mechanism. Molecular Therapy, 2009, 17, 65-72.	3.7	126
11	Macrophages and Renal Fibrosis. Seminars in Nephrology, 2010, 30, 302-317.	0.6	125
12	Kynurenine-3-monooxygenase inhibition prevents multiple organ failure in rodent models of acute pancreatitis. Nature Medicine, 2016, 22, 202-209.	15.2	124
13	Kidney Single-Cell Atlas Reveals Myeloid Heterogeneity in Progression and Regression of Kidney Disease. Journal of the American Society of Nephrology: JASN, 2020, 31, 2833-2854.	3.0	113
14	Macrophages and dendritic cells: what is the difference?. Kidney International, 2008, 74, 5-7.	2.6	108
15	Pericytes in the renal vasculature: roles in health and disease. Nature Reviews Nephrology, 2018, 14, 521-534.	4.1	95
16	Infusion of IL-10–expressing cells protects against renal ischemia through induction of lipocalin-2. Kidney International, 2012, 81, 969-982.	2.6	93
17	Conditional ablation of macrophages disrupts ovarian vasculature. Reproduction, 2011, 141, 821-831.	1.1	90
18	The Origins and Functions of Tissue-Resident Macrophages in Kidney Development. Frontiers in Physiology, 2017, 8, 837.	1.3	90

#	Article	IF	CITATIONS
19	Inflammatory Cells in Renal Injury and Repair. Seminars in Nephrology, 2007, 27, 250-259.	0.6	85
20	Cellular senescence inhibits renal regeneration after injury in mice, with senolytic treatment promoting repair. Science Translational Medicine, $2021,13,.$	5.8	83
21	Macrophages Expressing Heme Oxygenase-1 Improve Renal Function in Ischemia/Reperfusion Injury. Molecular Therapy, 2010, 18, 1706-1713.	3.7	80
22	The induction of macrophage hemeoxygenase-1 is protective during acute kidney injury in aging mice. Kidney International, $2011, 79, 966-976$.	2.6	68
23	Renal Ischaemia Reperfusion Injury: A Mouse Model of Injury and Regeneration. Journal of Visualized Experiments, 2014, , .	0.2	67
24	Urinary peptidomics in a rodent model of diabetic nephropathy highlights epidermal growth factor as a biomarker for renal deterioration in patients with type 2 diabetes. Kidney International, 2016, 89, 1125-1135.	2.6	62
25	Novel Fat Depot–Specific Mechanisms Underlie Resistance to Visceral Obesity and Inflammation in 11β-Hydroxysteroid Dehydrogenase Type 1–Deficient Mice. Diabetes, 2011, 60, 1158-1167.	0.3	54
26	Hemeoxygenase-1 and Renal Ischaemia-Reperfusion Injury. Nephron Experimental Nephrology, 2010, 115, e33-e37.	2.4	52
27	Heat-Shock Proteins and Acute Ischaemic Kidney Injury. Nephron Experimental Nephrology, 2014, 126, 167-174.	2.4	45
28	Nitric Oxide Is an Important Mediator of Renal Tubular Epithelial Cell Death in Vitro and in Murine Experimental Hydronephrosis. American Journal of Pathology, 2006, 169, 388-399.	1.9	41
29	Identification and quantification of apoptosis in the kidney using morphology, biochemical and molecular markers. Nephrology, 2007, 12, 452-458.	0.7	41
30	Peritubular Capillary Rarefaction and Lymphangiogenesis in Chronic Allograft Failure. Transplantation, 2007, 83, 1542-1550.	0.5	40
31	Hyperglycemia and Renin-Dependent Hypertension Synergize to Model Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2012, 23, 405-411.	3.0	40
32	$11\hat{l}^2$ -Hydroxysteroid Dehydrogenase Type 1 Is Expressed in Neutrophils and Restrains an Inflammatory Response in Male Mice. Endocrinology, 2016, 157, 2928-2936.	1.4	36
33	Heat shock protein 90 inhibition abrogates TLR4-mediated NF-κB activity and reduces renal ischemia-reperfusion injury. Scientific Reports, 2015, 5, 12958.	1.6	34
34	Kynurenine 3-monooxygenase is a critical regulator of renal ischemia–reperfusion injury. Experimental and Molecular Medicine, 2019, 51, 1-14.	3.2	34
35	Macrophages and Kidney Transplantation. Seminars in Nephrology, 2010, 30, 278-289.	0.6	31
36	Intrarenal B Cell Cytokines Promote Transplant Fibrosis and Tubular Atrophy. American Journal of Transplantation, 2015, 15, 3067-3080.	2.6	30

#	Article	IF	CITATIONS
37	A Murine Model of Irreversible and Reversible Unilateral Ureteric Obstruction. Journal of Visualized Experiments, 2014, , .	0.2	27
38	Cellular Senescence and Senotherapies in the Kidney: Current Evidence and Future Directions. Frontiers in Pharmacology, 2020, 11, 755.	1.6	26
39	Systematic review of mouse kidney transplantation. Transplant International, 2013, 26, 1149-1160.	0.8	25
40	Recent early clinical drug development for acute kidney injury. Expert Opinion on Investigational Drugs, 2017, 26, 141-154.	1.9	22
41	Complementary Roles for Single-Nucleus and Single-Cell RNA Sequencing in Kidney Disease Research. Journal of the American Society of Nephrology: JASN, 2019, 30, 712-713.	3.0	21
42	Identifying cell-enriched miRNAs in kidney injury and repair. JCI Insight, 2020, 5, .	2.3	19
43	Tight blood glycaemic and blood pressure control in experimental diabetic nephropathy reduces extracellular matrix production without regression of fibrosis. Nephrology, 2014, 19, 802-813.	0.7	18
44	Inflammatory lymphangiogenesis in a rat transplant model of interstitial fibrosis and tubular atrophy. Transplant International, 2012, 25, 792-800.	0.8	16
45	The Utility of the Additive EuroSCORE, RIFLE and AKIN Staging Scores in the Prediction and Diagnosis of Acute Kidney Injury after Cardiac Surgery. Nephron Clinical Practice, 2014, 128, 29-38.	2.3	16
46	Heat-shock protein-70 and regulatory T cell–mediated protection from ischemic injury. Kidney International, 2014, 85, 5-7.	2.6	13
47	Refining the Mouse Subtotal Nephrectomy in Male 129S2/SV Mice for Consistent Modeling of Progressive Kidney Disease With Renal Inflammation and Cardiac Dysfunction. Frontiers in Physiology, 2019, 10, 1365.	1.3	11
48	Granulocyte macrophage-colony stimulating factor: A key modulator of renal mononuclear phagocyte plasticity. Immunobiology, 2019, 224, 60-74.	0.8	10
49	Macrophages and Transplant Rejection. Transplantation, 2013, 96, 946-948.	0.5	9
50	Challenges in early clinical drug development for ischemia-reperfusion injury in kidney transplantation. Expert Opinion on Drug Discovery, 2015, 10, 753-762.	2.5	9
51	Administration of Heme Arginate Ameliorates Murine Type 2 Diabetes Independently of Heme Oxygenase Activity. PLoS ONE, 2013, 8, e78209.	1.1	8
52	Mouse Kidney Transplantation: Models of Allograft Rejection. Journal of Visualized Experiments, 2014, , e52163.	0.2	8
53	Acute Liver Injury Is Independent of B Cells or Immunoglobulin M. PLoS ONE, 2015, 10, e0138688.	1.1	8
54	Aging Modulates the Effects of Ischemic Injury Upon Mesenchymal Cells within the Renal Interstitium and Microvasculature. Stem Cells Translational Medicine, 2021, 10, 1232-1248.	1.6	7

#	Article	IF	CITATIONS
55	Circulating IgM Requires Plasma Membrane Disruption to Bind Apoptotic and Non-Apoptotic Nucleated Cells and Erythrocytes. PLoS ONE, 2015, 10, e0131849.	1.1	6
56	Adenosine A2A agonists as therapy for glomerulonephritis. Kidney International, 2011, 80, 329-331.	2.6	5
57	Apoptotic cell administration is detrimental in murine renal ischaemia reperfusion injury. Journal of Inflammation, 2014, 11, 31.	1.5	3
58	Sonoporation of Human Renal Proximal Tubular Epithelial Cells In Vitro to Enhance the Liberation of Intracellular miRNA Biomarkers. Ultrasound in Medicine and Biology, 2022, 48, 1019-1032.	0.7	2
59	Microangiopathy and acute kidney injury in paroxysmal cold hemoglobinuria: A challenge for management. American Journal of Hematology, 2018, 93, 718-721.	2.0	1
60	Macrophages and Kidney Disease: Introduction. Seminars in Nephrology, 2010, 30, 215.	0.6	0
61	Clinical Trial: Heme Arginate in patients planned for Cardiac Surgery (HACS). Journal of Cardiothoracic Surgery, 2015, 10, .	0.4	0
62	ISN Forefronts Symposium 2015: The Diverse Function of Macrophages in Renal Disease. Kidney International Reports, 2016, 1, 204-209.	0.4	0