Jia Ouyang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4055747/publications.pdf

Version: 2024-02-01

331538 377752 1,457 64 21 34 citations h-index g-index papers 67 67 67 1515 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Open fermentative production of l-lactic acid by Bacillus sp. strain NL01 using lignocellulosic hydrolyzates as low-cost raw material. Bioresource Technology, 2013, 135, 475-480.	4.8	94
2	Improved enzymatic hydrolysis of microcrystalline cellulose (Avicel PH101) by polyethylene glycol addition. Bioresource Technology, 2010, 101, 6685-6691.	4.8	91
3	Catalytic Conversion of Bio-ethanol to Ethylene over La-Modified HZSM-5 Catalysts in a Bioreactor. Catalysis Letters, 2009, 132, 64-74.	1.4	76
4	Impacts of lignocellulose-derived inhibitors on l-lactic acid fermentation by Rhizopus oryzae. Bioresource Technology, 2016, 203, 173-180.	4.8	68
5	Cost-effective simultaneous saccharification and fermentation of I-lactic acid from bagasse sulfite pulp by Bacillus coagulans CC17. Bioresource Technology, 2016, 222, 431-438.	4.8	51
6	Valorization of dairy waste for enhanced D-lactic acid production at low cost. Process Biochemistry, 2018, 71, 18-22.	1.8	46
7	Comprehensive utilization of corncob for furfuryl alcohol production by chemo-enzymatic sequential catalysis in a biphasic system. Bioresource Technology, 2021, 319, 124156.	4.8	41
8	Efficient bioconversion of furfural to furfuryl alcohol by <i>Bacillus coagulans</i> NL01. RSC Advances, 2018, 8, 26720-26727.	1.7	40
9	Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain. PLoS ONE, 2016, 11, e0149101.	1.1	38
10	Efficient Non-sterilized Fermentation of Biomass-Derived Xylose to Lactic Acid by a Thermotolerant Bacillus coagulans NLO1. Applied Biochemistry and Biotechnology, 2012, 168, 2387-2397.	1.4	36
11	Characterization of an L-arabinose isomerase from Bacillus coagulans NLO1 and its application for D-tagatose production. BMC Biotechnology, 2016, 16, 55.	1.7	34
12	<i>In Vitro</i> Naringenin Biosynthesis from <i>p</i> -Coumaric Acid Using Recombinant Enzymes. Journal of Agricultural and Food Chemistry, 2019, 67, 13430-13436.	2.4	33
13	One-pot biosynthesis of furfuryl alcohol and lactic acid via a glucose coupled biphasic system using single Bacillus coagulans NL01. Bioresource Technology, 2020, 313, 123705.	4.8	32
14	Elegant and Efficient Biotransformation for Dual Production of <scp>d</scp> -Tagatose and Bioethanol from Cheese Whey Powder. Journal of Agricultural and Food Chemistry, 2019, 67, 829-835.	2.4	29
15	Production of optically pure l-phenyllactic acid by using engineered Escherichia coli coexpressing l-lactate dehydrogenase and formate dehydrogenase. Journal of Biotechnology, 2015, 207, 47-51.	1.9	28
16	Comparative Study on Four Chemical Pretreatment Methods for an Efficient Saccharification of Corn Stover. Energy & Stover, Fuels, 2014, 28, 4282-4287.	2.5	27
17	One-pot process for lactic acid production from wheat straw by an adapted Bacillus coagulans and identification of genes related to hydrolysate-tolerance. Bioresource Technology, 2020, 315, 123855.	4.8	27
18	A novel thermostable \hat{l}^2 -galactosidase from Bacillus coagulans with excellent hydrolysis ability for lactose in whey. Journal of Dairy Science, 2019, 102, 9740-9748.	1.4	26

#	Article	IF	CITATIONS
19	Efficient Conversion of Inulin to Inulooligosaccharides through Endoinulinase from <i>Aspergillus niger</i> . Journal of Agricultural and Food Chemistry, 2016, 64, 2612-2618.	2.4	25
20	A versatile Pseudomonas putida KT2440 with new ability: selective oxidation of 5-hydroxymethylfurfural to 5-hydroxymethyl-2-furancarboxylic acid. Bioprocess and Biosystems Engineering, 2020, 43, 67-73.	1.7	24
21	Efficient lactic acid production from dilute acid-pretreated lignocellulosic biomass by a synthetic consortium of engineered Pseudomonas putida and Bacillus coagulans. Biotechnology for Biofuels, 2021, 14, 227.	6.2	24
22	Enzymatic hydrolysis, adsorption, and recycling during hydrolysis of bagasse sulfite pulp. Bioresource Technology, 2013, 146, 288-293.	4.8	23
23	Efficient wholeâ€eell biotransformation ofÂfurfural to furfuryl alcohol by <i>Saccharomyces cerevisiae</i> NL22. Journal of Chemical Technology and Biotechnology, 2019, 94, 3825-3831.	1.6	23
24	A comprehensive review on microbial production of 1,2-propanediol: micro-organisms, metabolic pathways, and metabolic engineering. Biotechnology for Biofuels, 2021, 14, 216.	6.2	23
25	Comparison of Hydrolysis Efficiency and Enzyme Adsorption of Three Different Cellulosic Materials in the Presence of Poly(ethylene Glycol). Bioenergy Research, 2013, 6, 1252-1259.	2.2	22
26	A new magnesium bisulfite pretreatment (MBSP) development for bio-ethanol production from corn stover. Bioresource Technology, 2016, 199, 188-193.	4.8	22
27	Biocatalytic Production of Trehalose from Maltose by Using Whole Cells of Permeabilized Recombinant Escherichia coli. PLoS ONE, 2015, 10, e0140477.	1.1	22
28	Enhanced saccharification of SO2 catalyzed steam-exploded corn stover by polyethylene glycol addition. Biomass and Bioenergy, 2011, 35, 2053-2058.	2.9	21
29	Molecular Characterization of a Recombinant Zea mays Phenylalanine Ammonia-Lyase (ZmPAL2) and Its Application in trans-Cinnamic Acid Production from I-Phenylalanine. Applied Biochemistry and Biotechnology, 2015, 176, 924-937.	1.4	21
30	Fumaric Acid Production from Alkali-Pretreated Corncob by Fed-Batch Simultaneous Saccharification and Fermentation Combined with Separated Hydrolysis and Fermentation at High Solids Loading. Applied Biochemistry and Biotechnology, 2017, 181, 573-583.	1.4	19
31	Co-production of ethanol, xylo -oligosaccharides and magnesium lignosulfonate from wheat straw by a controlled magnesium bisulfite pretreatment (MBSP). Industrial Crops and Products, 2018, 113, 128-134.	2.5	19
32	Highly efficient production of d-lactic acid from chicory-derived inulin by Lactobacillus bulgaricus. Bioprocess and Biosystems Engineering, 2016, 39, 1749-1757.	1.7	18
33	Synthesis of 2,5-furandicarboxylic acid by a TEMPO/laccase system coupled with <i>Pseudomonas putida</i> KT2440. RSC Advances, 2020, 10, 21781-21788.	1.7	18
34	Kinetic characterization of recombinant Bacillus coagulans FDP-activated l-lactate dehydrogenase expressed in Escherichia coli and its substrate specificity. Protein Expression and Purification, 2014, 95, 219-225.	0.6	17
35	Rational Design of <i>Bacillus coagulans</i> NL01 <scp>I</scp> -Arabinose Isomerase and Use of Its F279I Variant in <scp>d</scp> -Tagatose Production. Journal of Agricultural and Food Chemistry, 2017, 65, 4715-4721.	2.4	17
36	An integrated lignocellulose biorefinery process: Two-step sequential treatment with formic acid for efficiently producing ethanol and furfural from corn cobs. Renewable Energy, 2022, 191, 775-784.	4.3	17

#	Article	IF	Citations
37	Efficient in situ separation and production of l-lactic acid by Bacillus coagulans using weak basic anion-exchange resin. Bioprocess and Biosystems Engineering, 2018, 41, 205-212.	1.7	16
38	Lignin removal improves xylooligosaccharides production from poplar by acetic acid hydrolysis. Bioresource Technology, 2022, 354, 127190.	4.8	16
39	Selective Biosynthesis of Furoic Acid From Furfural by Pseudomonas Putida and Identification of Molybdate Transporter Involvement in Furfural Oxidation. Frontiers in Chemistry, 2020, 8, 587456.	1.8	15
40	Efficient biosynthesis of cinnamyl alcohol by engineered Escherichia coli overexpressing carboxylic acid reductase in a biphasic system. Microbial Cell Factories, 2020, 19, 163.	1.9	15
41	The key role of delignification in overcoming the inherent recalcitrance of Chinese fir for biorefining. Bioresource Technology, 2021, 319, 124154.	4.8	15
42	Mild and efficient two-step pretreatment of lignocellulose using formic acid solvent followed by alkaline salt. Cellulose, 2021, 28, 1283-1293.	2.4	14
43	Difference analysis of the enzymatic hydrolysis performance of acid-catalyzed steam-exploded corn stover before and after washing with water. Bioprocess and Biosystems Engineering, 2016, 39, 1619-1626.	1.7	13
44	Characterization, functional analysis and application of 4-Coumarate: CoA ligase genes from Populus trichocarpa. Journal of Biotechnology, 2019, 302, 92-100.	1.9	13
45	Simultaneous Saccharification and Fermentation of Bagasse Sulfite Pulp to Lactic Acid by Bacillus coagulans CC17. BioResources, 2014, 9, .	0.5	12
46	Enhanced l-Lactic Acid Production from Biomass-Derived Xylose by a Mutant Bacillus coagulans. Applied Biochemistry and Biotechnology, 2014, 173, 1896-1906.	1.4	12
47	Development of two-step pretreatment of Chinese fir sawdust using dilute sulfuric acid followed by sodium chlorite for bioethanol production. Cellulose, 2019, 26, 8513-8524.	2.4	12
48	Valorization of Gelidium amansii for dual production of D-galactonic acid and 5-hydroxymethyl-2-furancarboxylic acid by chemo-biological approach. Microbial Cell Factories, 2020, 19, 104.	1.9	12
49	Removal of inhibitory furan aldehydes in lignocellulosic hydrolysates via chitosan-chitin nanofiber hybrid hydrogel beads. Bioresource Technology, 2022, 346, 126563.	4.8	12
50	Improved biosynthesis of 2,5-Furandicarboxylic acid through coupling of heterologous pathways in Escherichia coli and native pathways in Pseudomonas putida. Biochemical Engineering Journal, 2020, 161, 107657.	1.8	11
51	Fungal chitosan production using xylose rich of corn stover prehydrolysate by Rhizopus oryzae. Biotechnology and Biotechnological Equipment, 2017, 31, 1160-1166.	0.5	10
52	Simultaneously separation of xylo-oligosaccharide and lignosulfonate from wheat straw magnesium bisulfite pretreatment spent liquor using ion exchange resin. Bioresource Technology, 2018, 249, 189-195.	4.8	10
53	Simultaneous consumption of cellobiose and xylose by Bacillus coagulans to circumvent glucose repression and identification of its cellobiose-assimilating operons. Biotechnology for Biofuels, 2018, 11, 320.	6.2	10
54	Enhanced biosynthesis of chiral phenyllactic acid from l-phenylalanine through a new whole-cell biocatalyst. Bioprocess and Biosystems Engineering, 2018, 41, 1205-1212.	1.7	8

#	Article	IF	CITATIONS
55	Genomic analysis of a xylose operon and characterization of novel xylose isomerase and xylulokinase from Bacillus coagulans NLO1. Biotechnology Letters, 2016, 38, 1331-1339.	1.1	7
56	Enhanced Inulin Saccharification by Self-Produced Inulinase from a Newly Isolated Penicillium sp. and its Application in d-Lactic Acid Production. Applied Biochemistry and Biotechnology, 2018, 186, 122-131.	1.4	6
57	Extending galactose-oxidation pathway of Pseudomonas putida for utilization of galactose-rich red macroalgae as sustainable feedstock. Journal of Biotechnology, 2022, 348, 1-9.	1.9	6
58	Engineering of a \hat{l}^2 -galactosidase from Bacillus coagulans to relieve product inhibition and improve hydrolysis performance. Journal of Dairy Science, 2021, 104, 10566-10575.	1.4	4
59	Production of a Trichoderma reesei QM9414 xylanase in Pichia pastoris and its application in biobleaching of wheat straw pulp. World Journal of Microbiology and Biotechnology, 2011, 27, 751-758.	1.7	3
60	Draft Genome Sequence of Bacillus coagulans NLO1, a Wonderful <scp>l</scp> -Lactic Acid Producer. Genome Announcements, 2015, 3, .	0.8	3
61	Metabolic Engineering of Escherichia coli K12 for Homofermentative Production of l-Lactate from Xylose. Applied Biochemistry and Biotechnology, 2018, 184, 703-715.	1.4	3
62	A thermostable leucine dehydrogenase from Bacillus coagulansNLO1: Expression, purification and characterization. Process Biochemistry, 2020, 90, 89-96.	1.8	3
63	Development of a process for the enhanced enzymatic digestibility of solid waste from tofu to yield fermentable biosugars. Biocatalysis and Biotransformation, 0, , 1-11.	1.1	2
64	Development of a highâ€efficiency <i>trans</i> a€€innamic acid bioproduction method by pH ontrolled separation technology. Journal of Chemical Technology and Biotechnology, 2019, 94, 2364-2371.	1.6	0