Jon I Robson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4055621/publications.pdf

Version: 2024-02-01

		186265		168389	
55	2,947	28		53	
papers	citations	h-index		g-index	
			. '		
75	75	75		3545	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature, 2018, 556, 227-230.	27.8	293
2	Have Aerosols Caused the Observed Atlantic Multidecadal Variability?. Journals of the Atmospheric Sciences, 2013, 70, 1135-1144.	1.7	282
3	Causes of the Rapid Warming of the North Atlantic Ocean in the Mid-1990s. Journal of Climate, 2012, 25, 4116-4134.	3.2	226
4	A reversal of climatic trends in the North Atlantic since 2005. Nature Geoscience, 2016, 9, 513-517.	12.9	174
5	North Atlantic climate far more predictable than models imply. Nature, 2020, 583, 796-800.	27.8	158
6	Comment on "The Atlantic Multidecadal Oscillation without a role for ocean circulation― Science, 2016, 352, 1527-1527.	12.6	136
7	Atlantic overturning in decline?. Nature Geoscience, 2014, 7, 2-3.	12.9	124
8	Recent Progress in Understanding and Predicting Atlantic Decadal Climate Variability. Current Climate Change Reports, 2017, 3, 112-127.	8.6	115
9	Initialized decadal predictions of the rapid warming of the North Atlantic Ocean in the mid 1990s. Geophysical Research Letters, 2012, 39, .	4.0	91
10	Aerosolâ€Forced AMOC Changes in CMIP6 Historical Simulations. Geophysical Research Letters, 2020, 47, e2020GL088166.	4.0	85
11	Historical Simulations With HadGEM3â€GC3.1 for CMIP6. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001995.	3.8	84
12	Exploring the impact of CMIP5 model biases on the simulation of North Atlantic decadal variability. Geophysical Research Letters, 2015, 42, 5926-5934.	4.0	80
13	Atlantic Multidecadal Variability and the U.K. ACSIS Program. Bulletin of the American Meteorological Society, 2018, 99, 415-425.	3.3	80
14	Preindustrial Control Simulations With HadGEM3â€GC3.1 for CMIP6. Journal of Advances in Modeling Earth Systems, 2018, 10, 3049-3075.	3.8	62
15	The evolution of the North Atlantic Meridional Overturning Circulation since 1980. Nature Reviews Earth & Environment, 2022, 3, 241-254.	29.7	58
16	The Importance of Wind and Buoyancy Forcing for the Boundary Density Variations and the Geostrophic Component of the AMOC at 26°N. Journal of Physical Oceanography, 2014, 44, 2387-2408.	1.7	56
17	The Mean State and Variability of the North Atlantic Circulation: A Perspective From Ocean Reanalyses. Journal of Geophysical Research: Oceans, 2019, 124, 9141-9170.	2.6	55
18	Decadal predictions of the cooling and freshening of the North Atlantic in the 1960s and the role of ocean circulation. Climate Dynamics, 2014, 42, 2353-2365.	3.8	53

#	Article	IF	CITATIONS
19	Evaluating the potential for statistical decadal predictions of sea surface temperatures with a perfect model approach. Climate Dynamics, 2011, 37, 2495-2509.	3.8	51
20	Forced decadal changes in the East Asian summer monsoon: the roles of greenhouse gases and anthropogenic aerosols. Climate Dynamics, 2018, 51, 3699-3715.	3.8	49
21	An Anatomy of the Cooling of the North Atlantic Ocean in the 1960s and 1970s. Journal of Climate, 2014, 27, 8229-8243.	3.2	43
22	Effect of the Atlantic Multidecadal Variability on the Global Monsoon. Geophysical Research Letters, 2019, 46, 1765-1775.	4.0	43
23	Revised IR spectrum, radiative efficiency and global warming potential of nitrogen trifluoride. Geophysical Research Letters, 2006, 33, n/a-n/a.	4.0	40
24	Predictable Climate Impacts of the Decadal Changes in the Ocean in the 1990s. Journal of Climate, 2013, 26, 6329-6339.	3.2	37
25	Mechanisms of decadal variability in the Labrador Sea and the wider North Atlantic in a high-resolution climate model. Climate Dynamics, 2017, 49, 2625-2647.	3.8	37
26	A role of the Atlantic Ocean in predicting summer surface air temperature over North East Asia?. Climate Dynamics, 2018, 51, 473-491.	3.8	37
27	Recent multivariate changes in the North Atlantic climate system, with a focus on 2005–2016. International Journal of Climatology, 2018, 38, 5050-5076.	3.5	34
28	A Mechanism of Internal Decadal Atlantic Ocean Variability in a High-Resolution Coupled Climate Model. Journal of Climate, 2015, 28, 7764-7785.	3.2	32
29	Decadal prediction of the North Atlantic subpolar gyre in the HiGEM high-resolution climate model. Climate Dynamics, 2018, 50, 921-937.	3.8	30
30	Impacts of Atlantic multidecadal variability on the tropical Pacific: a multi-model study. Npj Climate and Atmospheric Science, 2021, 4, .	6.8	29
31	Skilful interannual climate prediction from two large initialised model ensembles. Environmental Research Letters, 2020, 15, 094083.	5.2	25
32	The Interpretation and Use of Biases in Decadal Climate Predictions. Journal of Climate, 2014, 27, 2931-2947.	3.2	23
33	Impact of internal variability on projections of Sahel precipitation change. Environmental Research Letters, 2017, 12, 114003.	5.2	23
34	Decadal predictions with the HiGEM high resolution global coupled climate model: description and basic evaluation. Climate Dynamics, 2017, 48, 297-311.	3.8	16
35	Predicting the seasonal evolution of southern African summer precipitation in the DePreSys3 prediction system. Climate Dynamics, 2019, 52, 6491-6510.	3.8	16
36	Role of the Atlantic multidecadal variability in modulating East Asian climate. Climate Dynamics, 2021, 56, 381-398.	3.8	16

#	Article	IF	CITATIONS
37	Robust Multiyear Climate Impacts of Volcanic Eruptions in Decadal Prediction Systems. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031739.	3.3	15
38	Labrador Sea subsurface density as a precursor of multidecadal variability in the North Atlantic: a multi-model study. Earth System Dynamics, 2021, 12, 419-438.	7.1	13
39	Drivers of Recent North Pacific Decadal Variability: The Role of Aerosol Forcing. Earth's Future, 2021, 9, e2021EF002249.	6.3	13
40	Insights into Decadal North Atlantic Sea Surface Temperature and Ocean Heat Content Variability from an Eddy-Permitting Coupled Climate Model. Journal of Climate, 2019, 32, 6137-6161.	3.2	12
41	The Role of Anthropogenic Aerosol Forcing in the 1850–1985 Strengthening of the AMOC in CMIP6 Historical Simulations. Journal of Climate, 2022, 35, 3243-3263.	3.2	11
42	How Robust Are the Surface Temperature Fingerprints of the Atlantic Overturning Meridional Circulation on Monthly Time Scales?. Geophysical Research Letters, 2018, 45, 3559-3567.	4.0	10
43	Coupled climate response to Atlantic Multidecadal Variability in a multi-model multi-resolution ensemble. Climate Dynamics, 2022, 59, 805-836.	3.8	10
44	Projected near term changes in the East Asian summer monsoon and its uncertainty. Environmental Research Letters, 2019, 14, 084038.	5.2	9
45	Comment on "Multiyear Prediction of Monthly Mean Atlantic Meridional Overturning Circulation at 26.5°N― Science, 2012, 338, 604-604.	12.6	8
46	A novel transport assimilation method for the Atlantic meridional overturning circulation at $26\hat{A}^{\circ}N$. Quarterly Journal of the Royal Meteorological Society, 2014, 140, 2563-2572.	2.7	8
47	The Evaluation of the North Atlantic Climate System in UKESM1 Historical Simulations for CMIP6. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002126.	3.8	8
48	Processes shaping the spatial pattern and seasonality of the surface air temperature response to anthropogenic forcing. Climate Dynamics, 2020, 54, 3959-3975.	3.8	7
49	Skilful decadal predictions of subpolar North Atlantic SSTs using CMIP model-analogues. Environmental Research Letters, 2021, 16, 064090.	5.2	7
50	Skilful seasonal predictions of global monsoon summer precipitation with DePreSys3. Environmental Research Letters, 2021, 16, 104035.	5.2	6
51	Mechanisms of Internal Atlantic Multidecadal Variability in HadGEM3-GC3.1 at Two Different Resolutions. Journal of Climate, 2022, 35, 1365-1383.	3.2	6
52	Surging of Global Surface Temperature due to Decadal Legacy of Ocean Heat Uptake. Journal of Climate, 2020, 33, 8025-8045.	3.2	3
53	Can the boundary profiles at 26° N be used to extract buoyancy-forced Atlantic Meridional Overturning Circulation signals?. Ocean Science, 2020, 16, 1067-1088.	3.4	1
54	Early-winter North Atlantic low-level jet latitude biases in climate models: implications for simulated regional atmosphere-ocean linkages. Environmental Research Letters, 2022, 17, 014025.	5 . 2	1

#	Article	IF	CITATIONS
55	Interactions between the stratospheric polar vortex and Atlantic circulation on seasonal to multi-decadal timescales. Atmospheric Chemistry and Physics, 2022, 22, 4867-4893.	4.9	1