
Kohsaku Kawakami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4055584/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Layer-by-layer self-assembled shells for drug delivery. Advanced Drug Delivery Reviews, 2011, 63, 762-771.	6.6	404
2	Microemulsion formulation for enhanced absorption of poorly soluble drugs. Journal of Controlled Release, 2002, 81, 65-74.	4.8	234
3	Modification of physicochemical characteristics of active pharmaceutical ingredients and application of supersaturatable dosage forms for improving bioavailability of poorly absorbed drugs. Advanced Drug Delivery Reviews, 2012, 64, 480-495.	6.6	216
4	Microemulsion formulation for enhanced absorption of poorly soluble drugs. Journal of Controlled Release, 2002, 81, 75-82.	4.8	159
5	One-step preparation of chitosan solid nanoparticles by electrospray deposition. International Journal of Pharmaceutics, 2010, 397, 211-217.	2.6	149
6	Calorimetric Investigation of the Structural Relaxation of Amorphous Materials: Evaluating Validity of the Methodologies. Journal of Pharmaceutical Sciences, 2005, 94, 948-965.	1.6	137
7	β-Cyclodextrin-crosslinked alginate gel for patient-controlled drug delivery systems: regulation of host–guest interactions with mechanical stimuli. Journal of Materials Chemistry B, 2013, 1, 2155.	2.9	130
8	Bioinspired nanoarchitectonics as emerging drug delivery systems. New Journal of Chemistry, 2014, 38, 5149-5163.	1.4	128
9	Solubilization behavior of a poorly soluble drug under combined use of surfactants and cosolvents. European Journal of Pharmaceutical Sciences, 2006, 28, 7-14.	1.9	122
10	Bridging the Difference to the Billionth-of-a-Meter Length Scale: How to Operate Nanoscopic Machines and Nanomaterials by Using Macroscopic Actions. Chemistry of Materials, 2014, 26, 519-532.	3.2	81
11	Coaxial Electrospray Formulations for Improving Oral Absorption of a Poorly Water-Soluble Drug. Molecular Pharmaceutics, 2011, 8, 807-813.	2.3	70
12	Current status of amorphous formulation and other special dosage forms as formulations for early clinical phases. Journal of Pharmaceutical Sciences, 2009, 98, 2875-2885.	1.6	65
13	Reversibility of Enantiotropically Related Polymorphic Transformations from a Practical Viewpoint: Thermal Analysis of Kinetically Reversible/Irreversible Polymorphic Transformations. Journal of Pharmaceutical Sciences, 2007, 96, 982-989.	1.6	64
14	Nanoporous Carbon Sensor with Cage-in-Fiber Structure: Highly Selective Aniline Adsorbent toward Cancer Risk Management. ACS Applied Materials & Interfaces, 2013, 5, 2930-2934.	4.0	62
15	Solubilization behavior of poorly soluble drugs with combined use of Gelucire 44/14 and cosolvent. Journal of Pharmaceutical Sciences, 2004, 93, 1471-1479.	1.6	60
16	Correlation between Glass-Forming Ability and Fragility of Pharmaceutical Compounds. Journal of Physical Chemistry B, 2015, 119, 4873-4880.	1.2	51
17	Effect of Hydrophilic Polymers on Physical Stability of Liposome Dispersions. Journal of Physical Chemistry B, 2001, 105, 2374-2385.	1.2	49
18	Relationship between Crystallization Tendencies during Cooling from Melt and Isothermal Storage: Toward a General Understanding of Physical Stability of Pharmaceutical Glasses. Molecular Pharmaceutics, 2014, 11, 1835-1843.	2.3	48

#	Article	IF	CITATIONS
19	Fabrication of Solid Collagen Nanoparticles Using Electrospray Deposition. Chemical and Pharmaceutical Bulletin, 2014, 62, 422-428.	0.6	45
20	Preparation of fenofibrate solid dispersion using electrospray deposition and improvement in oral absorption by instantaneous post-heating of the formulation. International Journal of Pharmaceutics, 2013, 450, 123-128.	2.6	43
21	Crystallization Tendency of Pharmaceutical Glasses: Relevance to Compound Properties, Impact of Formulation Process, and Implications for Design of Amorphous Solid Dispersions. Pharmaceutics, 2019, 11, 202.	2.0	42
22	Synergetic Role of Hypromellose and Methacrylic Acid Copolymer in the Dissolution Improvement of Amorphous Solid Dispersions. Journal of Pharmaceutical Sciences, 2017, 106, 1042-1050.	1.6	41
23	Supersaturation and crystallization: non-equilibrium dynamics of amorphous solid dispersions for oral drug delivery. Expert Opinion on Drug Delivery, 2017, 14, 735-743.	2.4	41
24	Impact of the Amount of Excess Solids on Apparent Solubility. Pharmaceutical Research, 2005, 22, 1537-1543.	1.7	40
25	Investigation of the dynamic process during spray-drying to improve aerodynamic performance of inhalation particles. International Journal of Pharmaceutics, 2010, 390, 250-259.	2.6	40
26	Crystallization of sucrose glass under ambient conditions: Evaluation of crystallization rate and unusual melting behavior of resultant crystals. Journal of Pharmaceutical Sciences, 2006, 95, 1354-1363.	1.6	37
27	Miscibility analysis of particulate solid dispersions prepared by electrospray deposition. International Journal of Pharmaceutics, 2012, 433, 71-78.	2.6	36
28	Application of modulated-temperature DSC to the analysis of enantiotropically related polymorphic transitions. Thermochimica Acta, 2005, 427, 93-99.	1.2	33
29	Assessment of amorphous content by microcalorimetry. Journal of Pharmaceutical Sciences, 2002, 91, 417-423.	1.6	32
30	Cryo-TEM and AFM Observation of the Time-Dependent Evolution of Amorphous Probucol Nanoparticles Formed by the Aqueous Dispersion of Ternary Solid Dispersions. Molecular Pharmaceutics, 2019, 16, 2184-2198.	2.3	32
31	Direct observation of the enthalpy relaxation and the recovery processes of maltose-based amorphous formulation by isothermal microcalorimetry. Pharmaceutical Research, 2003, 20, 1430-1436.	1.7	31
32	Effect of Drug–Polymer Interactions through Hypromellose Acetate Succinate Substituents on the Physical Stability on Solid Dispersions Studied by Fourier-Transform Infrared and Solid-State Nuclear Magnetic Resonance. Molecular Pharmaceutics, 2019, 16, 2785-2794.	2.3	31
33	Mechanism of protein solubilization in sodium bis(2-ethylhexyl) sulfosuccinate water-in-oil microemulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 109, 217-233.	2.3	29
34	Theory and practice of supersaturatable formulations for poorly soluble drugs. Therapeutic Delivery, 2015, 6, 339-352.	1.2	29
35	Understanding the Glass-Forming Ability of Active Pharmaceutical Ingredients for Designing Supersaturating Dosage Forms. Journal of Pharmaceutical Sciences, 2012, 101, 3239-3248.	1.6	28
36	Mechanism of Enhanced Nifedipine Dissolution by Polymer-Blended Solid Dispersion through Molecular-Level Characterization. Molecular Pharmaceutics, 2018, 15, 4099-4109.	2.3	28

Kohsaku Kawakami

#	Article	IF	CITATIONS
37	Supramolecular Approaches for Drug Development. Current Medicinal Chemistry, 2012, 19, 2388-2398.	1.2	26
38	Compositional Homogeneity of Liposomal Membranes Investigated by Capillary Electrophoresis. Journal of Colloid and Interface Science, 1998, 206, 177-180.	5.0	22
39	Phase separation of supersaturated solution created from amorphous solid dispersions: Relevance to oral absorption. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 132, 146-156.	2.0	22
40	Competition of Thermodynamic and Dynamic Factors During Formation of Multicomponent Particles via Spray Drying. Journal of Pharmaceutical Sciences, 2013, 102, 518-529.	1.6	21
41	Surface Effects on the Crystallization of Ritonavir Glass. Journal of Pharmaceutical Sciences, 2015, 104, 276-279.	1.6	21
42	Molecular Complex Composed of β-Cyclodextrin-Grafted Chitosan and pH-Sensitive Amphipathic Peptide for Enhancing Cellular Cholesterol Efflux under Acidic pH. Bioconjugate Chemistry, 2015, 26, 572-581.	1.8	21
43	Physical Stabilization of Pharmaceutical Glasses Based on Hydrogen Bond Reorganization under Sub- <i>T</i> _g Temperature. Molecular Pharmaceutics, 2017, 14, 264-273.	2.3	21
44	Dynamics of Ribavirin Glass in the Sub- <i>T</i> _g Temperature Region. Journal of Physical Chemistry B, 2011, 115, 11375-11381.	1.2	20
45	Enhanced Boosting of Oral Absorption of Lopinavir Through Electrospray Coencapsulation with Ritonavir. Journal of Pharmaceutical Sciences, 2015, 104, 2977-2985.	1.6	20
46	Media-dependent morphology of supramolecular aggregates of β-cyclodextrin-grafted chitosan and insulin through multivalent interactions. Journal of Materials Chemistry B, 2014, 2, 1802.	2.9	19
47	Crystallization of probucol from solution and the glassy state. International Journal of Pharmaceutics, 2017, 517, 322-328.	2.6	19
48	Rigidity of Lipid Membranes Detected by Capillary Electrophoresis. Langmuir, 1999, 15, 1893-1895.	1.6	18
49	Emerging pressure-release materials for drug delivery. Expert Opinion on Drug Delivery, 2013, 10, 1465-1469.	2.4	18
50	Dependence of Intestinal Absorption Profile of Insulin on Carrier Morphology Composed of β-Cyclodextrin-Grafted Chitosan. Molecular Pharmaceutics, 2016, 13, 4034-4042.	2.3	18
51	Studies on the physico-chemical characteristics of collagen–pectin composites. RSC Advances, 2014, 4, 63840-63849.	1.7	17
52	Enthalpy-driven interactions with sulfated glycosaminoglycans promote cell membrane penetration of arginine peptides. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1339-1349.	1.4	17
53	Correlation between drug dissolution and resistance to water-induced phase separation in solid dispersion formulations revealed by solid-state NMR spectroscopy. International Journal of Pharmaceutics, 2020, 577, 119086.	2.6	17
54	Preparation of antibacterial collagen–pectin particles for biotherapeutics. RSC Advances, 2014, 4, 42846-42854.	1.7	16

Kohsaku Kawakami

#	Article	IF	CITATIONS
55	Nucleation and crystallization of celecoxib glass: Impact of experience of low temperature on physical stability. Thermochimica Acta, 2019, 671, 43-47.	1.2	15
56	Effect of Salt Type on Hygroscopicity of a New Cephalosporin S-3578. Pharmaceutical Research, 2005, 22, 1365-1373.	1.7	14
57	Calorimetric investigation of solvent-mediated transformation of sulfamerazine polymorphism. Journal of Pharmaceutical Sciences, 2010, 99, 76-81.	1.6	14
58	Practical Approach for Measuring Heat Capacity of Pharmaceutical Crystals/Glasses by Modulated-Temperature Differential Scanning Calorimetry. Chemical and Pharmaceutical Bulletin, 2013, 61, 315-319.	0.6	14
59	Importance of Mesoporous Silica Particle Size in the Stabilization of Amorphous Pharmaceuticals—The Case of Simvastatin. Pharmaceutics, 2020, 12, 384.	2.0	13
60	Liposome/Emulsion Transition Induced by α-Tocopheryl Acetate. Langmuir, 1999, 15, 7454-7460.	1.6	11
61	Time-dependent phase separation of amorphous solid dispersions: Implications for accelerated stability studies. Journal of Drug Delivery Science and Technology, 2018, 46, 197-206.	1.4	11
62	Parallel Thermal Analysis Technology Using an Infrared Camera for High-Throughput Evaluation of Active Pharmaceutical Ingredients: A Case Study of Melting Point Determination. AAPS PharmSciTech, 2010, 11, 1202-1205.	1.5	10
63	Totally Phospholipidic Mesoporous Particles. Journal of Physical Chemistry C, 2015, 119, 7255-7263.	1.5	10
64	Stabilization mechanism of amorphous carbamazepine by transglycosylated rutin, a non-polymeric amorphous additive with a high glass transition temperature. International Journal of Pharmaceutics, 2021, 600, 120491.	2.6	10
65	Interaction Mechanisms of Giant Unilamellar Vesicles with Hydrophobic Glass Surfaces and Silicone Oil–Water Interfaces: Adsorption, Deformation, Rupture, Dynamic Shape Changes, Internal Vesicle Formation, and Desorption. Langmuir, 2019, 35, 16136-16145.	1.6	9
66	Relevance of Liquid-Liquid Phase Separation of Supersaturated Solution in Oral Absorption of Albendazole from Amorphous Solid Dispersions. Pharmaceutics, 2021, 13, 220.	2.0	9
67	Self-Organizing, Environmentally Stable, and Low-Cost Copper–Nickel Complex Inks for Printed Flexible Electronics. ACS Applied Materials & Interfaces, 2022, 14, 8146-8156.	4.0	9
68	Determination of the Entrapped Volume of Liposomes: Dilution Method. Analytical Biochemistry, 1999, 269, 139-142.	1.1	8
69	Low-Density Microparticles with Petaloid Surface Structure for Pulmonary Drug Delivery. Journal of Pharmaceutical Sciences, 2014, 103, 1309-1313.	1.6	8
70	Pharmaceutical Applications of Thermal Analysis. Handbook of Thermal Analysis and Calorimetry, 2018, , 613-641.	1.6	8
71	Ultraslow Cooling for the Stabilization of Pharmaceutical Glasses. Journal of Physical Chemistry B, 2019, 123, 4996-5003.	1.2	8
72	Impact of degree of supersaturation on the dissolution and oral absorption behaviors of griseofulvin amorphous solid dispersions. Journal of Drug Delivery Science and Technology, 2020, 56, 101172.	1.4	8

Κοηsaku Kawakami

#	Article	IF	CITATIONS
73	Isothermal Crystallization of Imwitor 742 from Supercooled Liquid State. Pharmaceutical Research, 2007, 24, 738-747.	1.7	7
74	Impact of compression pressure on tablet appearance. International Journal of Pharmaceutics, 2007, 341, 44-49.	2.6	6
75	Biopredictive in vitro testing methods to assess intestinal drug absorption from supersaturating dosage forms. Journal of Drug Delivery Science and Technology, 2020, 56, 101275.	1.4	6
76	Physicochemical Properties of Solid Phospholipid Particles as a Drug Delivery Platform for Improving Oral Absorption of Poorly Soluble Drugs. Pharmaceutical Research, 2017, 34, 208-216.	1.7	5
77	Cyclodextrin–Grafted Chitosans for Pharmaceutical Applications. Trends in Glycoscience and Glycotechnology, 2017, 29, E93-E98.	0.0	4
78	Preparation of polyoligo(ethyleneglycol) methacrylate decorated with pendant cholesterol moieties: Hydrogel and mesoglobule preparation and their use for entrapping lipophilic nanomaterials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 444, 173-179.	2.3	3
79	Self-assembly study and formation of hydrophobized PVA dense and stable nanoparticles loaded with cholesterol or a steroid-type drug. Journal of Colloid and Interface Science, 2014, 428, 57-62.	5.0	3
80	Determination of the Coverage of Phosphatidylcholine Monolayers Formed at Silicone Oil–Water Interfaces by Vesicle Fusion. Journal of Physical Chemistry B, 2020, 124, 8719-8727.	1.2	3
81	Nanotechnologies in development of pulmonary drug delivery. Drug Delivery System, 2009, 24, 477-483.	0.0	3
82	Arginine-Glycosaminoglycan Interaction Regulates Penetration Efficiency of Arginine-Rich Cell-Penetrating Peptides in Biological Membrane. Biophysical Journal, 2015, 108, 82a.	0.2	2
83	Determining the Dependence of Interfacial Tension on Molecular Area for Phospholipid Monolayers Formed at Silicone Oil–Water and Tricaprylin–Water Interfaces by Vesicle Fusion. Langmuir, 2021, 37, 7527-7535.	1.6	2
84	Application of liposome technology for inhalation therapy. Drug Delivery System, 2008, 23, 460-466.	0.0	2
85	Domain Sorting in Giant Unilamellar Vesicles Adsorbed on Glass. Langmuir, 2021, 37, 1082-1088.	1.6	1
86	Chapter 10. Nanotechnology in Drug Delivery Systems. RSC Nanoscience and Nanotechnology, 2012, , 242-258.	0.2	1
87	Design of Highly Dispersive Particles for Pulmonary Drug Delivery. Journal of the Society of Powder Technology, Japan, 2009, 46, 698-703.	0.0	Ο
88	Application of Electrospray Deposition for Preparing Nanoparticulate Formulation of Poorly Soluble Drugs. Journal of the Society of Powder Technology, Japan, 2011, 48, 167-172.	0.0	0
89	Patient-Controlled Drug Delivery System Utilizing Mechanical Stimuli-Responsive Gel Carrier. Drug Delivery System, 2013, 28, 92-98.	0.0	0
90	Reaction mediated artificial cell termination: control of vesicle viability using Rh(<scp>i</scp>)-catalyzed hydrogenation. Physical Chemistry Chemical Physics, 2014, 16, 16454-16457.	1.3	0

Κοήδακυ Κάψακαμι

#	Article	IF	CITATIONS
91	Development of Manufacturing Technology for Porous Particulate Material Composed of Phospholipids. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2016, 24, 40-44.	0.0	Ο
92	General understanding on physical stability of pharmaceutical glasses. Asian Journal of Pharmaceutical Sciences, 2016, 11, 54-55.	4.3	0
93	Excipients: Oral Drug Delivery. , 0, , 3329-3336.		0
94	Molecular Assemblies Composed of Phospholipids for Pharmaceutical Formulations. Journal of the Japan Society of Colour Material, 2016, 89, 238-243.	0.0	0
95	Cyclodextrin–Grafted Chitosans for Pharmaceutical Applications. Trends in Glycoscience and Glycotechnology, 2017, 29, J69-J74.	0.0	0
96	Managing Thermal History to Stabilize/Destabilize Pharmaceutical Glasses. , 2020, , 95-111.		0
97	The 47 th Controlled Release Society Virtual Annual Meeting. Drug Delivery System, 2020, 35, 340-341.	0.0	0
98	Hydrocarbon Penetration into Phospholipid Monolayers Formed at Hydrocarbon–Water Interfaces. Langmuir, 2022, 38, 3720-3728.	1.6	0
99	Physicochemical characterization technologies for manipulating new modality products. Drug Delivery System, 2021, 36, 333-333.	0.0	О