Wanhao Cai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4055548/publications.pdf Version: 2024-02-01

Μλημλο ζαι

#	Article	IF	CITATIONS
1	Intramolecular hydrogen bonds in a single macromolecule: Strength in high vacuum versus liquid environments. Nano Research, 2022, 15, 1517-1523.	10.4	16
2	Understanding the Extraordinary Flexibility of Polydimethylsiloxane through Single-Molecule Mechanics. , 2022, 4, 329-335.		15
3	Single-chain mechanics of cis-1,4-polyisoprene and polysulfide. Polymer, 2022, 240, 124473.	3.8	10
4	Multivalent non-covalent interactions lead to strongest polymer adhesion. Nanoscale, 2022, 14, 3768-3776.	5.6	12
5	Sulfur-Mediated Polycarbonate Polyurethane for Potential Application of Blood-Contacting Materials. Frontiers in Bioengineering and Biotechnology, 2022, 10, 874419.	4.1	2
6	Tellurium-containing polymer coating with glutathione peroxidase mimics capability for surface modification of intravascular implants. Materials and Design, 2022, 217, 110622.	7.0	2
7	Angle-dependent strength of a single chemical bond by stereographic force spectroscopy. Chemical Science, 2022, 13, 5734-5740.	7.4	11
8	Selenium-functionalized polycarbonate-polyurethane for sustained in situ generation of therapeutic gas for blood-contacting materials. Smart Materials in Medicine, 2022, 3, 361-373.	6.7	5
9	Preparation of phospholipid-based polycarbonate urethanes for potential applications of blood-contacting implants. International Journal of Energy Production and Management, 2020, 7, 491-504.	3.7	14
10	Phospholipid-based multifunctional coating via layer-by-layer self-assembly for biomedical applications. Materials Science and Engineering C, 2020, 116, 111237.	7.3	8
11	Single-Chain Polymer Models Incorporating the Effects of Side Groups: An Approach to General Polymer Models. Macromolecules, 2019, 52, 7324-7330.	4.8	20
12	Single-Molecule Studies Reveal That Water Is a Special Solvent for Amylose and Natural Cellulose. Macromolecules, 2019, 52, 5006-5013.	4.8	18
13	Force-Induced Transition of ï€â€"ï€ Stacking in a Single Polystyrene Chain. Journal of the American Chemical Society, 2019, 141, 9500-9503.	13.7	63
14	Detecting van der Waals forces between a single polymer repeating unit and a solid surface in high vacuum. Nano Research, 2019, 12, 57-61.	10.4	37
15	Single-chain Elasticity of Poly(ethylene glycol) in High Vacuum. Acta Chimica Sinica, 2019, 77, 189.	1.4	4
16	A facile and environment-friendly method for fabrication of polymer brush. Chinese Journal of Polymer Science (English Edition), 2017, 35, 857-865.	3.8	3
17	Revealing the formation mechanism of insoluble polydopamine by using a simplified model system. Polymer Chemistry, 2017, 8, 860-864.	3.9	71
18	Real time quantification of the chemical cross-link density of a hydrogel by in situ UV-vis spectroscopy. Polymer Chemistry, 2015, 6, 4252-4257.	3.9	11