List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4055537/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9047-9051.	7.1	391
2	Acetic Acid Bacteria, Newly Emerging Symbionts of Insects. Applied and Environmental Microbiology, 2010, 76, 6963-6970.	3.1	281
3	Delayed larval development in Anopheles mosquitoes deprived of Asaiabacterial symbionts. BMC Microbiology, 2012, 12, S2.	3.3	186
4	<i>Asaia</i> , a versatile acetic acid bacterial symbiont, capable of crossâ€colonizing insects of phylogenetically distant genera and orders. Environmental Microbiology, 2009, 11, 3252-3264.	3.8	167
5	Mosquito-Bacteria Symbiosis: The Case of Anopheles gambiae and Asaia. Microbial Ecology, 2010, 60, 644-654.	2.8	150
6	Paternal transmission of symbiotic bacteria in malaria vectors. Current Biology, 2008, 18, R1087-R1088.	3.9	133
7	Microbial symbionts: a resource for the management of insectâ€related problems. Microbial Biotechnology, 2012, 5, 307-317.	4.2	131
8	<i>Acetobacter tropicalis</i> Is a Major Symbiont of the Olive Fruit Fly (<i>Bactrocera oleae</i>). Applied and Environmental Microbiology, 2009, 75, 3281-3288.	3.1	127
9	Mutual exclusion of Asaia and Wolbachia in the reproductive organs of mosquito vectors. Parasites and Vectors, 2015, 8, 278.	2.5	127
10	Phylogenomic Evidence for the Presence of a Flagellum and cbb3 Oxidase in the Free-Living Mitochondrial Ancestor. Molecular Biology and Evolution, 2011, 28, 3285-3296.	8.9	124
11	Contrasted resistance of stone-dwelling Geodermatophilaceae species to stresses known to give rise to reactive oxygen species. FEMS Microbiology Ecology, 2012, 80, 566-577.	2.7	97
12	Plant-mediated interspecific horizontal transmission of an intracellular symbiont in insects. Scientific Reports, 2015, 5, 15811.	3.3	90
13	Molecular Evidence for Multiple Infections as Revealed by Typing of <i>Asaia</i> Bacterial Symbionts of Four Mosquito Species. Applied and Environmental Microbiology, 2010, 76, 7444-7450.	3.1	87
14	Bacterial endophytes of mangrove propagules elicit early establishment of the natural host and promote growth of cereal crops under salt stress. Microbiological Research, 2019, 223-225, 33-43.	5.3	87
15	â€~ <i>Candidatus</i> Liberibacter europaeus' sp. nov. that is associated with and transmitted by the psyllid <i>Cacopsylla pyri</i> apparently behaves as an endophyte rather than a pathogen. Environmental Microbiology, 2011, 13, 414-426.	3.8	84
16	Interactions between Asaia, Plasmodium and Anopheles: new insights into mosquito symbiosis and implications in Malaria Symbiotic Control. Parasites and Vectors, 2013, 6, 182.	2.5	82
17	Effects of the Diet on the Microbiota of the Red Palm Weevil (Coleoptera: Dryophthoridae). PLoS ONE, 2015, 10, e0117439.	2.5	74
18	DNA is preserved and maintains transforming potential after contact with brines of the deep anoxic hypersaline lakes of the Eastern Mediterranean Sea. Saline Systems, 2008, 4, 10.	2.0	72

#	Article	IF	CITATIONS
19	Different mosquito species host Wickerhamomyces anomalus (Pichia anomala): perspectives on vector-borne diseases symbiotic control. Antonie Van Leeuwenhoek, 2011, 99, 43-50.	1.7	68
20	Bacterial Endosymbiont Localization in <i>Hyalesthes obsoletus</i> , the Insect Vector of Bois Noir in <i>Vitis vinifera</i> . Applied and Environmental Microbiology, 2011, 77, 1423-1435.	3.1	68
21	Characterization of the Bacterial Community Associated with Larvae and Adults of <i>Anoplophora chinensis </i> Collected in Italy by Culture and Culture-Independent Methods. BioMed Research International, 2013, 2013, 1-12.	1.9	66
22	Acetic Acid Bacteria Genomes Reveal Functional Traits for Adaptation to Life in Insect Guts. Genome Biology and Evolution, 2014, 6, 912-920.	2.5	66
23	The yeast <i>Wickerhamomyces anomalus</i> (<i>Pichia anomala</i>) inhabits the midgut and reproductive system of the Asian malaria vector <i>Anopheles stephensi</i> . Environmental Microbiology, 2011, 13, 911-921.	3.8	65
24	Bacterial diversity shift determined by different diets in the gut of the spotted wing fly <i>Drosophila suzukii</i> is primarily reflected on acetic acid bacteria. Environmental Microbiology Reports, 2017, 9, 91-103.	2.4	59
25	Horizontal transmission of the symbiotic bacterium Asaia sp. in the leafhopper Scaphoideus titanus Ball (Hemiptera: Cicadellidae). BMC Microbiology, 2012, 12, S4.	3.3	57
26	Microbial symbionts of honeybees: a promising tool to improve honeybee health. New Biotechnology, 2013, 30, 716-722.	4.4	53
27	Evolution of Mitochondria Reconstructed from the Energy Metabolism of Living Bacteria. PLoS ONE, 2014, 9, e96566.	2.5	52
28	Olfactory attraction of Drosophila suzukii by symbiotic acetic acid bacteria. Journal of Pest Science, 2016, 89, 783-792.	3.7	49
29	Developmental stages and gut microenvironments influence gut microbiota dynamics in the invasive beetle <i>Popillia japonica</i> Newman (Coleoptera: Scarabaeidae). Environmental Microbiology, 2019, 21, 4343-4359.	3.8	42
30	Compartmentalization of bacterial and fungal microbiomes in the gut of adult honeybees. Npj Biofilms and Microbiomes, 2021, 7, 42.	6.4	41
31	Genome Sequence of Blastococcus saxobsidens DD2, a Stone-Inhabiting Bacterium. Journal of Bacteriology, 2012, 194, 2752-2753.	2.2	37
32	Microbial assisted phytodepuration for water reclamation: Environmental benefits and threats. Chemosphere, 2020, 241, 124843.	8.2	37
33	Hydrocarbon pollutants shape bacterial community assembly of harbor sediments. Marine Pollution Bulletin, 2016, 104, 211-220.	5.0	36
34	Hydrolytic Profile of the Culturable Gut Bacterial Community Associated With Hermetia illucens. Frontiers in Microbiology, 2020, 11, 1965.	3.5	35
35	Genome Sequence of Radiation-Resistant Modestobacter marinus Strain BC501, a Representative Actinobacterium That Thrives on Calcareous Stone Surfaces. Journal of Bacteriology, 2012, 194, 4773-4774.	2.2	33
36	Bacteria Associated to Plants Naturally Selected in a Historical PCB Polluted Soil Show Potential to Sustain Natural Attenuation. Frontiers in Microbiology, 2017, 8, 1385.	3.5	33

#	Article	IF	CITATIONS
37	Multiple guests in a single host: interactions across symbiotic and phytopathogenic bacteria in phloemâ€feeding vectors – a review. Entomologia Experimentalis Et Applicata, 2019, 167, 171-185.	1.4	30
38	Root Bacteria Recruited by Phragmites australis in Constructed Wetlands Have the Potential to Enhance Azo-Dye Phytodepuration. Microorganisms, 2019, 7, 384.	3.6	28
39	Incidence of â€~Candidatus Liberibacter europaeus' and phytoplasmas in Cacopsylla species (Hemiptera:)	Tj ETQq1 1 1.2	0.784314 rg8 24
40	Chimeric symbionts expressing a Wolbachia protein stimulate mosquito immunity and inhibit filarial parasite development. Communications Biology, 2020, 3, 105.	4.4	24
41	Methods for the genetic manipulation of marine bacteria. Electronic Journal of Biotechnology, 2018, 33, 17-28.	2.2	21
42	One-pot chemoenzymatic synthesis of aldoximes from primary alcohols in water. Green Chemistry, 2012, 14, 2158.	9.0	20
43	Marine Microorganisms as Source of Stereoselective Esterases and Ketoreductases: Kinetic Resolution of a Prostaglandin Intermediate. Marine Biotechnology, 2015, 17, 144-152.	2.4	20
44	The Genomes of Four <i>Meyerozyma caribbica</i> Isolates and Novel Insights into the <i>Meyerozyma guilliermondii</i> Species Complex. G3: Genes, Genomes, Genetics, 2018, 8, 755-759.	1.8	20
45	Asaia symbionts interfere with infection by Flavescence dorée phytoplasma in leafhoppers. Journal of Pest Science, 2018, 91, 1033-1046.	3.7	20
46	Influence of transgenic Bt176 and non-transgenic corn silage on the structure of rumen bacterial communities. Annals of Microbiology, 2011, 61, 925-930.	2.6	19
47	Activation of Immune Genes in Leafhoppers by Phytoplasmas and Symbiotic Bacteria. Frontiers in Physiology, 2019, 10, 795.	2.8	19
48	The Most Important Bacillus Species in Biotechnology. , 2012, , 329-345.		15
49	Microbial ecology-based methods to characterize the bacterial communities of non-model insects. Journal of Microbiological Methods, 2015, 119, 110-125.	1.6	14
50	Cultivable hydrocarbon degrading bacteria have low phylogenetic diversity but highly versatile functional potential. International Biodeterioration and Biodegradation, 2019, 142, 43-51.	3.9	13
51	Genetic and Biochemical Diversity of <i>Paenibacillus larvae</i> Isolated from Tunisian Infected Honey Bee Broods. BioMed Research International, 2013, 2013, 1-9.	1.9	11
52	An Environmental Escherichia coli Strain Is Naturally Competent to Acquire Exogenous DNA. Frontiers in Microbiology, 2020, 11, 574301.	3.5	11
53	Destabilization of the Bacterial Interactome Identifies Nutrient Restriction-Induced Dysbiosis in Insect Guts. Microbiology Spectrum, 2022, 10, e0158021.	3.0	11
54	Structure/activity virtual screening and in vitro testing of small molecule inhibitors of 8-hydroxy-5-deazaflavin:NADPH oxidoreductase from gut methanogenic bacteria. Scientific Reports, 2020, 10, 13150.	3.3	9

#	Article	IF	CITATIONS
55	Draft Genome Sequence of the Hydrocarbon-Degrading Bacterium Alcanivorax dieselolei KS-293 Isolated from Surface Seawater in the Eastern Mediterranean Sea. Genome Announcements, 2015, 3, .	0.8	8
56	Highly divergent Mollicutes symbionts coexist in the scorpion <i>Androctonus australis</i> . Journal of Basic Microbiology, 2018, 58, 827-835.	3.3	7
57	Phenomics and Genomics Reveal Adaptation of Virgibacillus dokdonensis Strain 21D to Its Origin of Isolation, the Seawater-Brine Interface of the Mediterranean Sea Deep Hypersaline Anoxic Basin Discovery. Frontiers in Microbiology, 2019, 10, 1304.	3.5	6
58	Extreme Marine Environments (Brines, Seeps, and Smokers). , 2016, , 251-282.		4
59	Acetic Acid Bacteria as Symbionts of Insects. , 2016, , 121-142.		4
60	Microbe Relationships with Phytoplasmas in Plants and Insects. , 2019, , 207-235.		4
61	A novel method for the isolation of DNA from intracellular bacteria, suitable for genomic studies. Annals of Microbiology, 2010, 60, 455-460.	2.6	3
62	An Updated View of the Microbial Diversity in Deep Hypersaline Anoxic Basins. , 2017, , 23-40.		3
63	Microbial Diversity and Biotechnological Potential of Microorganisms Thriving in the Deep-Sea Brine Pools. , 2018, , 19-32.		2
64	Zooplankton as a Transitional Host for <i>Escherichia coli</i> in Freshwater. Applied and Environmental Microbiology, 2022, 88, e0252221.	3.1	2