Yi Pei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4055502/publications.pdf

Version: 2024-02-01

28	3,043	22 h-index	28
papers	citations		g-index
29	29	29	3248
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature, 2005, 434, 666-670.	13.7	596
2	Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes and Development, 2006, 20, 3255-3268.	2.7	589
3	Crystal Structure of A. aeolicus Argonaute, a Site-Specific DNA-Guided Endoribonuclease, Provides Insights into RISC-Mediated mRNA Cleavage. Molecular Cell, 2005, 19, 405-419.	4.5	349
4	On the art of identifying effective and specific siRNAs. Nature Methods, 2006, 3, 670-676.	9.0	269
5	Strand-specific 5′-O-methylation of siRNA duplexes controls guide strand selection and targeting specificity. Rna, 2008, 14, 263-274.	1.6	174
6	Interactions between Fission Yeast mRNA Capping Enzymes and Elongation Factor Spt5. Journal of Biological Chemistry, 2002, 277, 19639-19648.	1.6	122
7	5′â€(<i>E</i>)â€Vinylphosphonate: A Stable Phosphate Mimic Can Improve the RNAi Activity of siRNA–GalNA Conjugates. ChemBioChem, 2016, 17, 985-989.	^A C _{1.3}	95
8	Yeast and Viral RNA 5′ Triphosphatases Comprise a New Nucleoside Triphosphatase Family. Journal of Biological Chemistry, 1998, 273, 34151-34156.	1.6	77
9	Quantitative evaluation of siRNA delivery in vivo. Rna, 2010, 16, 2553-2563.	1,6	66
10	The Length, Phosphorylation State, and Primary Structure of the RNA Polymerase II Carboxyl-terminal Domain Dictate Interactions with mRNA Capping Enzymes. Journal of Biological Chemistry, 2001, 276, 28075-28082.	1.6	64
11	Characterization of the Schizosaccharomyces pombe Cdk9/Pch1 Protein Kinase. Journal of Biological Chemistry, 2003, 278, 43346-43356.	1,6	61
12	Interactions between Fission Yeast Cdk9, Its Cyclin Partner Pch1, and mRNA Capping Enzyme Pct1 Suggest an Elongation Checkpoint for mRNA Quality Control. Journal of Biological Chemistry, 2003, 278, 7180-7188.	1.6	61
13	Effective siRNA delivery and target mRNA degradation using an amphipathic peptide to facilitate pH-dependent endosomal escape. Biochemical Journal, 2011, 435, 475-487.	1.7	59
14	Separable Functions of the Fission Yeast Spt5 Carboxyl-Terminal Domain (CTD) in Capping Enzyme Binding and Transcription Elongation Overlap with Those of the RNA Polymerase II CTD. Molecular and Cellular Biology, 2010, 30, 2353-2364.	1,1	57
15	Cyclin-Dependent Kinase 9 (Cdk9) of Fission Yeast Is Activated by the CDK-Activating Kinase Csk1, Overlaps Functionally with the TFIIH-Associated Kinase Mcs6, and Associates with the mRNA Cap Methyltransferase Pcm1 In Vivo. Molecular and Cellular Biology, 2006, 26, 777-788.	1.1	51
16	Mutational Analysis of Bacteriophage T4 RNA Ligase 1. Journal of Biological Chemistry, 2003, 278, 29454-29462.	1.6	47
17	A Potential Protein-RNA Recognition Event along the RISC-Loading Pathway from the Structure of A. aeolicus Argonaute with Externally Bound siRNA. Structure, 2006, 14, 1557-1565.	1.6	45
18	Mutational Analyses of Yeast RNA Triphosphatases Highlight a Common Mechanism of Metal-dependent NTP Hydrolysis and a Means of Targeting Enzymes to Pre-mRNAs in Vivo by Fusion to the Guanylyltransferase Component of the Capping Apparatus. Journal of Biological Chemistry, 1999, 274, 28865-28874.	1.6	44

#	Article	IF	CITATION
19	RNA-Induced Silencing Complex-Bound Small Interfering RNA Is a Determinant of RNA Interference-Mediated Gene Silencing in Mice. Molecular Pharmacology, 2011, 79, 953-963.	1.0	44
20	Characterization of Schizosaccharomyces pombe RNA triphosphatase. Nucleic Acids Research, 2001, 29, 387-396.	6.5	42
21	Structural Biology of RNA Silencing and Its Functional Implications. Cold Spring Harbor Symposia on Quantitative Biology, 2006, 71, 81-93.	2.0	33
22	Assessing the Heterogeneity Level in Lipid Nanoparticles for siRNA Delivery: Size-Based Separation, Compositional Heterogeneity, and Impact on Bioperformance. Molecular Pharmaceutics, 2013, 10, 397-405.	2.3	28
23	RNA triphosphatase is essential in Schizosaccharomyces pombe and Candida albicans. BMC Microbiology, 2001, 1, 29.	1.3	16
24	Homodimeric Quaternary Structure Is Required for the in Vivo Function and Thermal Stability of Saccharomyces cerevisiae and Schizosaccharomyces pombe RNA Triphosphatases. Journal of Biological Chemistry, 2003, 278, 30487-30496.	1.6	16
25	Characterization of the <i>Schizosaccharomyces pombe</i> Spt5-Spt4 complex. Rna, 2009, 15, 1241-1250.	1.6	16
26	Effect of biological matrix and sample preparation on qPCR quantitation of siRNA drugs in animal tissues. Journal of Pharmacological and Toxicological Methods, 2011, 63, 168-173.	0.3	13
27	Systematic chemical modifications of single stranded siRNAs significantly improved CTNNB1 mRNA silencing. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4513-4517.	1.0	7
28	Live Cell Membranome cDNA Screen: A Novel Homogenous Live Cell Binding Assay to Study Membrane Protein-Ligand Interaction. SLAS Discovery, 2019, 24, 978-986.	1.4	2